
Chingakham Ranjit Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11580500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Translational recoding by chemical modification of non-AUG start codon ribonucleotide bases. Science Advances, 2022, 8, eabm8501.	10.3	3
2	Human oncoprotein 5MP suppresses general and repeat-associated non-AUG translation via elF3 by a common mechanism. Cell Reports, 2021, 36, 109376.	6.4	16
3	Gcn2 eIF2α kinase mediates combinatorial translational regulation through nucleotide motifs and uORFs in target mRNAs. Nucleic Acids Research, 2020, 48, 8977-8992.	14.5	13
4	The Interaction between the Ribosomal Stalk Proteins and Translation Initiation Factor 5B Promotes Translation Initiation. Molecular and Cellular Biology, 2018, 38, .	2.3	27
5	Molecular Landscape of the Ribosome Pre-initiation Complex during mRNA Scanning: Structural Role for eIF3c and Its Control by eIF5. Cell Reports, 2017, 18, 2651-2663.	6.4	54
6	Competition between translation initiation factor eIF5 and its mimic protein 5MP determines non-AUG initiation rate genome-wide. Nucleic Acids Research, 2017, 45, 11941-11953.	14.5	63
7	Overexpression of eIF5 or its protein mimic 5MP perturbs eIF2 function and induces <i>ATF4</i> translation through delayed re-initiation. Nucleic Acids Research, 2016, 44, 8704-8713.	14.5	40
8	The Proteasome-associated Protein Ecm29 Inhibits Proteasomal ATPase Activity and in Vivo Protein Degradation by the Proteasome. Journal of Biological Chemistry, 2013, 288, 29467-29481.	3.4	48
9	Reconfiguration of the proteasome during chaperone-mediated assembly. Nature, 2013, 497, 512-516.	27.8	73
10	Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function. Translation, 2013, 1, e26402.	2.9	3
11	Sequential Eukaryotic Translation Initiation Factor 5 (eIF5) Binding to the Charged Disordered Segments of eIF4G and eIF2β Stabilizes the 48S Preinitiation Complex and Promotes Its Shift to the Initiation Mode. Molecular and Cellular Biology, 2012, 32, 3978-3989.	2.3	30
12	Mechanisms of translational regulation by a human eIF5-mimic protein. Nucleic Acids Research, 2011, 39, 8314-8328.	14.5	44
13	The Eukaryotic Initiation Factor (eIF) 4G HEAT Domain Promotes Translation Re-initiation in Yeast Both Dependent on and Independent of eIF4A mRNA Helicase. Journal of Biological Chemistry, 2010, 285, 21922-21933.	3.4	21
14	Yeast 18 S rRNA Is Directly Involved in the Ribosomal Response to Stringent AUG Selection during Translation Initiation. Journal of Biological Chemistry, 2010, 285, 32200-32212.	3.4	22
15	Eukaryotic Initiation Factor (eIF) 1 Carries Two Distinct eIF5-binding Faces Important for Multifactor Assembly and AUG Selection. Journal of Biological Chemistry, 2008, 283, 1094-1103.	3.4	54
16	Yeast Phenotypic Assays on Translational Control. Methods in Enzymology, 2007, 429, 105-137.	1.0	20
17	Change in Nutritional Status Modulates the Abundance of Critical Pre-initiation Intermediate Complexes During Translation Initiation in Vivo. Journal of Molecular Biology, 2007, 370, 315-330.	4.2	42
18	Localization and Characterization of Protein–Protein Interaction Sites. Methods in Enzymology, 2007, 429, 139-161.	1.0	18

#	Article	IF	CITATIONS
19	An elF5/elF2 complex antagonizes guanine nucleotide exchange by elF2B during translation initiation. EMBO Journal, 2006, 25, 4537-4546.	7.8	83
20	The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4C. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16164-16169.	7.1	68
21	Eukaryotic Translation Initiation Factor 5 Is Critical for Integrity of the Scanning Preinitiation Complex and Accurate Control of GCN4 Translation. Molecular and Cellular Biology, 2005, 25, 5480-5491.	2.3	45
22	Efficient Incorporation of Eukaryotic Initiation Factor 1 into the Multifactor Complex Is Critical for Formation of Functional Ribosomal Preinitiation Complexes in Vivo. Journal of Biological Chemistry, 2004, 279, 31910-31920.	3.4	41
23	Physical Association of Eukaryotic Initiation Factor (eIF) 5 Carboxyl-terminal Domain with the Lysine-rich eIF2β Segment Strongly Enhances Its Binding to eIF3. Journal of Biological Chemistry, 2004, 279, 49644-49655.	3.4	32