Sen Nieh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11580222/publications.pdf Version: 2024-02-01

SEN NIEH

#	Article	IF	CITATIONS
1	Modeling of natural gas fueled quadruple cycle for power applications. International Journal of Hydrogen Energy, 2018, 43, 10004-10015.	7.1	3
2	Measurements of Hydrogen-Enriched Combustion of JP-8 in Open Flame. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, .	2.3	6
3	Comparison of hydrogen and hydrogen-rich reformate enrichment of JP-8 in an open flame. Fuel, 2017, 210, 91-97.	6.4	4
4	Control of an air siphon nozzle using hydrogen and gases other than air. International Journal of Hydrogen Energy, 2016, 41, 683-689.	7.1	4
5	Autothermal reforming of synthetic JP-8 derived from a coal syngas stream. Fuel, 2013, 108, 731-739.	6.4	12
6	Simulation of dual firing of hydrogen-rich reformate and JP-8 surrogate in a swirling combustor. International Journal of Hydrogen Energy, 2013, 38, 5911-5917.	7.1	11
7	Selection and performance comparison of jet fuel surrogates for autothermal reforming. Fuel, 2011, 90, 1439-1448.	6.4	24
8	Polymer membrane air separation performance for portable oxygen enriched combustion applications. Energy Conversion and Management, 2007, 48, 1499-1505.	9.2	47
9	Simulation of Swirling Turbulent Heat Transfer in a Vortex Heat Exchanger. Numerical Heat Transfer; Part A: Applications, 2005, 48, 607-625.	2.1	8
10	SIMULATION OF SWIRLING TURBULENT FLOWS AND HEAT TRANSFER IN AN ANNULAR DUCT. Numerical Heat Transfer; Part A: Applications, 2003, 44, 591-609.	2.1	23
11	Swirling, reacting, turbulent gas-particle flow in a vortex combustor. Powder Technology, 2000, 112, 70-78.	4.2	13
12	SIMULATION OF GASEOUS COMBUSTION AND HEAT TRANSFER IN A VORTEX COMBUSTOR. Numerical Heat Transfer; Part A: Applications, 1997, 32, 697-713.	2.1	8
13	SIMULATION OF ANNULAR SWIRLING TURBULENT FLOWS WITH A NEW ALGEBRAIC REYNOLDS STRESS MODEL. Numerical Heat Transfer, Part B: Fundamentals, 1997, 31, 235-249.	0.9	12
14	Comprehensive modelling of pulverized coal combustion in a vortex combustor. Fuel, 1997, 76, 123-131.	6.4	23
15	Numerical Simulation of the Effects of Center Tube and Multiple Air Injection on the Gas Flow Field in a Vortex Combustor. Combustion Science and Technology, 1993, 88, 43-57.	2.3	5
16	A NEW VERSION OF ALGEBRAIC STRESS MODEL FOR SIMULATING STRONGLY SWIRLING TURBULENT FLOWS. Numerical Heat Transfer, Part B: Fundamentals, 1992, 22, 49-63.	0.9	28
17	Simulation of the Strongly Swirling Aerodynamic Field in a Vortex Combustor. Journal of Fluids Engineering, Transactions of the ASME, 1992, 114, 367-374.	1.5	8
18	Numerical Simulation of a Vortex Combustor Firing Dry Ultrafine Coal at 0.6 MW Thermal Input. Combustion Science and Technology, 1991, 77, 59-71.	2.3	3

#	Article	IF	CITATIONS
19	A NOVEL QUICK-CLOSING PROBE FOR MEASURING LOCAL PARTICULATE PHASE DENSITY IN GAS-PARTICLE SUSPENSIONS. Particulate Science and Technology, 1990, 8, 167-178.	2.1	ο