Claire M Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11578666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Invadopodia play a role in prostate cancer progression. BMC Cancer, 2022, 22, 386.	2.6	5
2	PAK-dependent regulation of actin dynamics in breast cancer cells. International Journal of Biochemistry and Cell Biology, 2022, 146, 106207.	2.8	4
3	Exosome-mediated RNAi of PAK4 prolongs survival of pancreatic cancer mouse model after loco-regional treatment. Biomaterials, 2021, 264, 120369.	11.4	44
4	p21-Activated Kinase 1 Promotes Breast Tumorigenesis via Phosphorylation and Activation of the Calcium/Calmodulin-Dependent Protein Kinase II. Frontiers in Cell and Developmental Biology, 2021, 9, 759259.	3.7	5
5	PlexinB1 Promotes Nuclear Translocation of the Glucocorticoid Receptor. Cells, 2020, 9, 3.	4.1	12
6	Exploring a role for fatty acid synthase in prostate cancer cell migration. Small GTPases, 2020, 12, 1-8.	1.6	7
7	Lipogenic signalling modulates prostate cancer cell adhesion and migration via modification of Rho GTPases. Oncogene, 2020, 39, 3666-3679.	5.9	35
8	Differential role for PAK1 and PAK4 during the invadopodia lifecycle. Small GTPases, 2019, 10, 1-7.	1.6	5
9	TIMP-2 secreted by monocyte-like cells is a potent suppressor of invadopodia formation in pancreatic cancer cells. BMC Cancer, 2019, 19, 1214.	2.6	18
10	PAK4 Kinase Activity Plays a Crucial Role in the Podosome Ring of Myeloid Cells. Cell Reports, 2019, 29, 3385-3393.e6.	6.4	20
11	PAK4 interacts with p85 alpha: implications for pancreatic cancer cell migration. Scientific Reports, 2017, 7, 42575.	3.3	34
12	PAK5 mediates cell: cell adhesion integrity via interaction with E-cadherin in bladder cancer cells. Biochemical Journal, 2017, 474, 1333-1346.	3.7	19
13	Engineering Pak1 Allosteric Switches. ACS Synthetic Biology, 2017, 6, 1257-1262.	3.8	26
14	The intellectual disability protein PAK3 regulates oligodendrocyte precursor cell differentiation. Neurobiology of Disease, 2017, 98, 137-148.	4.4	27
15	Deciphering the link between PI3K and PAK: An opportunity to target key pathways in pancreatic cancer?. Oncotarget, 2017, 8, 14173-14191.	1.8	31
16	LIMK Regulates Tumor-Cell Invasion and Matrix Degradation Through Tyrosine Phosphorylation of MT1-MMP. Scientific Reports, 2016, 6, 24925.	3.3	54
17	Significance of kinase activity in the dynamic invadosome. European Journal of Cell Biology, 2016, 95, 483-492.	3.6	19
18	PAK4 suppresses PDZ-RhoGEF activity to drive invadopodia maturation in melanoma cells. Oncotarget, 2016, 7, 70881-70897.	1.8	26

CLAIRE M WELLS

#	Article	IF	CITATIONS
19	A novel role for atypical MAPK kinase ERK3 in regulating breast cancer cell morphology and migration. Cell Adhesion and Migration, 2015, 9, 483-494.	2.7	55
20	PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion. Journal of Cell Biology, 2015, 211, 863-879.	5.2	61
21	Role of p-21-Activated Kinases in Cancer Progression. International Review of Cell and Molecular Biology, 2014, 309, 347-387.	3.2	85
22	A PAK6–IQGAP1 complex promotes disassembly of cell–cell adhesions. Cellular and Molecular Life Sciences, 2014, 71, 2759-2773.	5.4	32
23	P21-activated kinase 4 – Not just one of the PAK. European Journal of Cell Biology, 2013, 92, 129-138.	3.6	75
24	Hypoxia-induced invadopodia formation: a role for \hat{I}^2 -PIX. Open Biology, 2013, 3, 120159.	3.6	37
25	Nox2 Is Required for Macrophage Chemotaxis towards CSF-1. PLoS ONE, 2013, 8, e54869.	2.5	24
26	Signalling to cancer cell invasion through PAK family kinases. Frontiers in Bioscience - Landmark, 2011, 16, 849.	3.0	82
27	HGF-Induced DU145 Cell Scatter Assay. Methods in Molecular Biology, 2011, 769, 31-40.	0.9	18
28	Using the Dunn Chemotaxis Chamber to Analyze Primary Cell Migration in Real Time. Methods in Molecular Biology, 2011, 769, 41-51.	0.9	16
29	The emerging importance of group II PAKs. Biochemical Journal, 2010, 425, 465-473.	3.7	121
30	PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion. Journal of Cell Science, 2010, 123, 1663-1673.	2.0	88
31	A PAK4–LIMK1 pathway drives prostate cancer cell migration downstream of HGF. Cellular Signalling, 2008, 20, 1320-1328.	3.6	121
32	ROCK1 and LIMK2 Interact in Spread but Not Blebbing Cancer Cells. PLoS ONE, 2008, 3, e3398.	2.5	18
33	Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. Journal of Cell Science, 2006, 119, 2749-2757.	2.0	168
34	Vav1 and Vav2 play different roles in macrophage migration and cytoskeletal organization. Experimental Cell Research, 2005, 310, 303-310.	2.6	40
35	Rac1-deficient macrophages exhibit defects in cell spreading and membrane ruffling but not migration. Journal of Cell Science, 2004, 117, 1259-1268.	2.0	162
36	PAK4 is activated via PI3K in HGF-stimulated epithelial cells. Journal of Cell Science, 2002, 115, 3947-3956.	2.0	99