
Joshua M Kaplan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1157822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nature Genetics, 2000, 24, 251-256.	9.4	1,124
2	Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature, 1995, 378, 82-85.	13.7	389
3	Antagonistic Regulation of Synaptic Vesicle Priming by Tomosyn and UNC-13. Neuron, 2006, 51, 303-315.	3.8	142
4	Factors regulating the abundance and localization of synaptobrevin in the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11399-11404.	3.3	132
5	An RNAi Screen Identifies Genes that Regulate GABA Synapses. Neuron, 2008, 58, 346-361.	3.8	121
6	The Neuropeptides FLP-2 and PDF-1 Act in Concert To Arouse <i>Caenorhabditis elegans</i> Locomotion. Genetics, 2016, 204, 1151-1159.	1.2	96
7	Neurexin and Neuroligin Mediate Retrograde Synaptic Inhibition in <i>C. elegans</i> . Science, 2012, 337, 980-984.	6.0	94
8	Retrograde Synaptic Inhibition Is Mediated by α-Neurexin Binding to the α2δ Subunits of N-Type Calcium Channels. Neuron, 2017, 95, 326-340.e5.	3.8	91
9	UNC-13L, UNC-13S, and Tomosyn form a protein code for fast and slow neurotransmitter release in Caenorhabditis elegans. ELife, 2013, 2, e00967.	2.8	76
10	Sensory Neurons Arouse C. elegans Locomotion via Both Glutamate and Neuropeptide Release. PLoS Genetics, 2015, 11, e1005359.	1.5	41
11	Thioredoxin shapes the C. elegans sensory response to Pseudomonas produced nitric oxide. ELife, 2018, 7, .	2.8	41
12	A network of autism linked genes stabilizes two pools of synaptic GABAA receptors. ELife, 2015, 4, e09648.	2.8	39
13	NLP-12 Engages Different UNC-13 Proteins to Potentiate Tonic and Evoked Release. Journal of Neuroscience, 2015, 35, 1038-1042.	1.7	21
14	Heterodimerization of UNC-13/RIM regulates synaptic vesicle release probability but not priming in C. elegans. ELife, 2019, 8, .	2.8	21
15	A Hyperactive Form of unc-13 Enhances Ca2+ Sensitivity and Synaptic Vesicle Release Probability in C.Âelegans. Cell Reports, 2019, 28, 2979-2995.e4.	2.9	17
16	Shank is a dose-dependent regulator of Cav1 calcium current and CREB target expression. ELife, 2017, 6, .	2.8	16
17	Axonal Mitochondria Modulate Neuropeptide Secretion Through the Hypoxic Stress Response in <i>Caenorhabditis elegans</i> . Genetics, 2018, 210, 275-285.	1.2	13
18	Male pheromones modulate synaptic transmission at the C. elegans neuromuscular junction in a sexually dimorphic manner. ELife, 2021, 10, .	2.8	11

Joshua M Kaplan

#	Article	IF	CITATIONS
19	<i>Caenorhabditis elegans</i> junctophilin has tissue-specific functions and regulates neurotransmission with extended-synaptotagmin. Genetics, 2021, 218, .	1.2	9
20	Presynaptic Gα0 (GOA-1) signals to depress command neuron excitability and allow stretch-dependent modulation of egg laying in <i>Caenorhabditis elegans</i> . Genetics, 2021, 218, .	1.2	8
21	Shank promotes action potential repolarization by recruiting BK channels to calcium microdomains. ELife, 2022, 11, .	2.8	2