
MagÃ-n Lapuerta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1157562/publications.pdf Version: 2024-02-01

ΜΑζΑΝΙΑΟΠΕΡΤΑ

#	Article	IF	CITATIONS
1	Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science, 2008, 34, 198-223.	15.8	1,578
2	Emissions from a diesel–bioethanol blend in an automotive diesel engine. Fuel, 2008, 87, 25-31.	3.4	287
3	Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions. Fuel Processing Technology, 2008, 89, 828-837.	3.7	235
4	Diesel particulate emissions from used cooking oil biodiesel. Bioresource Technology, 2008, 99, 731-740.	4.8	234
5	Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 1999, 19, 513-529.	3.0	228
6	Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel, 2008, 87, 3161-3169.	3.4	226
7	Diesel emissions from biofuels derived from Spanish potential vegetable oils. Fuel, 2005, 84, 773-780.	3.4	223
8	Effect of engine operating conditions on the size of primary particles composing diesel soot agglomerates. Journal of Aerosol Science, 2007, 38, 455-466.	1.8	194
9	Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 2011, 92, 699-706.	3.7	194
10	Effect of fuel on the soot nanostructure and consequences on loading and regeneration of diesel particulate filters. Combustion and Flame, 2012, 159, 844-853.	2.8	190
11	Stability of diesel–bioethanol blends for use in diesel engines. Fuel, 2007, 86, 1351-1357.	3.4	182
12	Group additivity in soot formation for the example of C-5 oxygenated hydrocarbon fuels. Combustion and Flame, 2013, 160, 1484-1498.	2.8	140
13	Effect of Ethanol on Blending Stability and Diesel Engine Emissions. Energy & Fuels, 2009, 23, 4343-4354.	2.5	130
14	Fatty acid methyl esters (FAMEs) from castor oil: Production process assessment and synergistic effects in its properties. Renewable Energy, 2010, 35, 208-217.	4.3	128
15	Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Conversion and Management, 2013, 65, 255-261.	4.4	125
16	Modeling viscosity of butanol and ethanol blends with diesel and biodiesel fuels. Fuel, 2017, 199, 332-338.	3.4	124
17	Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number. Energy Policy, 2009, 37, 4337-4344.	4.2	123
18	Comparison of multiple diagnostic techniques to study soot formation and morphology in a diffusion flame. Combustion and Flame, 2017, 176, 567-583.	2.8	119

MagÃn Lapuerta

#	Article	IF	CITATIONS
19	Correlation for the estimation of the density of fatty acid esters fuels and its implications. A proposed Biodiesel Cetane Index. Chemistry and Physics of Lipids, 2010, 163, 720-727.	1.5	111
20	Key properties and blending strategies of hydrotreated vegetable oil as biofuel for diesel engines. Fuel Processing Technology, 2011, 92, 2406-2411.	3.7	111
21	A method to determine the fractal dimension of diesel soot agglomerates. Journal of Colloid and Interface Science, 2006, 303, 149-158.	5.0	101
22	Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass and Bioenergy, 2004, 27, 385-391.	2.9	95
23	Manipulating modern diesel engine particulate emission characteristics through butanol fuel blending and fuel injection strategies for efficient diesel oxidation catalysts. Applied Energy, 2017, 190, 490-500.	5.1	92
24	Soot reactivity analysis and implications on diesel filter regeneration. Progress in Energy and Combustion Science, 2020, 78, 100833.	15.8	91
25	Autoignition of blends of n -butanol and ethanol with diesel or biodiesel fuels in a constant-volume combustion chamber. Energy, 2017, 118, 613-621.	4.5	88
26	Potential for reducing emissions in a diesel engine by fuelling with conventional biodiesel and Fischer–Tropsch diesel. Fuel, 2010, 89, 3106-3113.	3.4	85
27	Diesel Particle Size Distribution Estimation from Digital Image Analysis. Aerosol Science and Technology, 2003, 37, 369-381.	1.5	83
28	Fuel Properties of Tire Pyrolysis Liquid and Its Blends with Diesel Fuel. Energy & Fuels, 2013, 27, 3296-3305.	2.5	77
29	Regeneration of diesel particulate filters: Effect of renewable fuels. Renewable Energy, 2017, 104, 30-39.	4.3	75
30	Sensitivity of diesel engine thermodynamic cycle calculation to measurement errors and estimated parameters. Applied Thermal Engineering, 2000, 20, 843-861.	3.0	74
31	Biokerosene from coconut and palm kernel oils: Production and properties of their blends with fossil kerosene. Fuel, 2012, 102, 483-490.	3.4	71
32	Pellet blends of poplar and pine sawdust: Effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Processing Technology, 2015, 132, 15-23.	3.7	70
33	Cold flow and filterability properties of n-butanol and ethanol blends with diesel and biodiesel fuels. Fuel, 2018, 224, 552-559.	3.4	67
34	Desulfurization of pyrolysis fuels obtained from waste: Lube oils, tires and plastics. Fuel, 2015, 150, 208-216.	3.4	66
35	Modeling diesel particulate emissions with neural networks. Fuel, 2001, 80, 539-548.	3.4	65

36 Diesel Particulate Emissions from Biofuels Derived from Spanish Vegetable Oils. , 0, , .

64

MagÃn Lapuerta

#	Article	IF	CITATIONS
37	Characterisation of residual char from biomass gasification: effect of the gasifier operating conditions. Journal of Cleaner Production, 2016, 138, 83-93.	4.6	63
38	Lubricity of Ethanol-Biodiesel-Diesel Fuel Blends. Energy & amp; Fuels, 2010, 24, 1374-1379.	2.5	60
39	Effect of soot accumulation in a diesel particle filter on the combustion process and gaseous emissions. Energy, 2012, 47, 543-552.	4.5	59
40	Evaluation of exhaust gas recirculation as a technique for reducing diesel engine NOx emissions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2000, 214, 85-93.	1.1	56
41	Thermogravimetric analysis of diesel particulate matter. Measurement Science and Technology, 2007, 18, 650-658.	1.4	55
42	Biodiesel from Low-Grade Animal Fats: Diesel Engine Performance and Emissions. Energy & Fuels, 2009, 23, 121-129.	2.5	52
43	Effect of the test temperature and anti-oxidant addition on the oxidation stability of commercial biodiesel fuels. Fuel, 2012, 93, 391-396.	3.4	49
44	Separate effect of H2, CH4 and CO on diesel engine performance and emissions under partial diesel fuel replacement. Fuel, 2016, 165, 173-184.	3.4	49
45	Interactions between aftertreatment systems architecture and combustion of oxygenated fuels for improved low temperature catalysts activity. Fuel, 2018, 229, 189-197.	3.4	48
46	Determination of light extinction efficiency of diesel soot from smoke opacity measurements. Measurement Science and Technology, 2005, 16, 2048-2055.	1.4	45
47	Geometrical determination of the lacunarity of agglomerates with integer fractal dimension. Journal of Colloid and Interface Science, 2010, 346, 23-31.	5.0	45
48	Fatty acid ethyl esters (FAEEs) obtained from grapeseed oil: A fully renewable biofuel. Renewable Energy, 2019, 132, 278-283.	4.3	45
49	Application of quartz tuning forks and extensional microresonators for viscosity and density measurements in oil/fuel mixtures. Microsystem Technologies, 2014, 20, 945-953.	1.2	44
50	Ignition Characteristics of Diesel Fuel in a Constant Volume Bomb under Diesel-Like Conditions. Effect of the Operation Parameters. Energy & Fuels, 2014, 28, 5445-5454.	2.5	44
51	Autoignition prediction capability of the Livengood–Wu correlation applied to fuels of commercial interest. International Journal of Engine Research, 2014, 15, 817-829.	1.4	42
52	Effect of a glycerol-derived advanced biofuel –FAGE (fatty acid formal glycerol ester)– on the emissions of a diesel engine tested under the New European Driving Cycle. Energy, 2015, 93, 568-579.	4.5	42
53	Emission factors for PM2.5, CO, CO2, NOx, SO2 and particle size distributions from the combustion of wood species using a new controlled combustion chamber 3CE. Science of the Total Environment, 2017, 584-585, 901-910.	3.9	42
54	Estimation of the Laminar Flame Speed of Producer Gas from Biomass Gasification. Energy & Fuels, 2005, 19, 2172-2178.	2.5	41

#	Article	IF	CITATIONS
55	Bulk Modulus of Compressibility of Diesel/Biodiesel/HVO Blends. Energy & Fuels, 2012, 26, 1336-1343.	2.5	40
56	Effect of ambient humidity and hygroscopy on the lubricity of diesel fuels. Wear, 2014, 309, 200-207.	1.5	40
57	Biokerosene from Babassu and Camelina Oils: Production and Properties of Their Blends with Fossil Kerosene. Energy & Fuels, 2012, 26, 5968-5976.	2.5	39
58	Emission benefits from the use of n-butanol blends in a Euro 6 diesel engine. International Journal of Engine Research, 2018, 19, 1099-1112.	1.4	39
59	Morphological analysis of soot agglomerates from biodiesel surrogates in a coflow burner. Journal of Aerosol Science, 2017, 111, 65-74.	1.8	38
60	Composition and size of diesel particulate emissions from a commercial European engine tested with present and future fuels. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217, 907-919.	1.1	37
61	The effect of diesel engine conditions on the size and morphology of soot particles. International Journal of Vehicle Design, 2009, 50, 91.	0.1	37
62	Optimization of Raman Spectroscopy Parameters for Characterizing Soot from Different Diesel Fuels. Combustion Science and Technology, 2011, 183, 1203-1220.	1.2	37
63	Structural effects of biodiesel on soot formation in a laminar coflow diffusion flame. Proceedings of the Combustion Institute, 2017, 36, 1321-1328.	2.4	37
64	Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine. International Journal of Engine Research, 2016, 17, 193-208.	1.4	35
65	Cold- and warm-temperature emissions assessment of n-butanol blends in a Euro 6 vehicle. Applied Energy, 2018, 218, 173-183.	5.1	35
66	Fuel Formulation Effects on Passenger Car Diesel Engine Particulate Emissions and Composition. , 0, , .		33
67	Effect of the gas state equation on the thermodynamic diagnostic of diesel combustion. Applied Thermal Engineering, 2006, 26, 1492-1499.	3.0	33
68	Effect of the Degree of Unsaturation of Biodiesel Fuels on NOx and Particulate Emissions. SAE International Journal of Fuels and Lubricants, 0, 1, 1150-1158.	0.2	33
69	Determination of enthalpy of formation of methyl and ethyl esters of fatty acids. Chemistry and Physics of Lipids, 2010, 163, 172-181.	1.5	33
70	Oxygen Extended Sooting Index of FAME Blends with Aviation Kerosene. Energy & Fuels, 2013, 27, 6815-6822.	2.5	32
71	Evaluation of eleven genotypes of castor oil plant (Ricinus communis L.) for the production of biodiesel. Industrial Crops and Products, 2015, 77, 484-490.	2.5	32
72	Effect of fatty acid composition of methyl and ethyl esters on the lubricity at different humidities. Fuel, 2016, 184, 202-210.	3.4	32

#	Article	IF	CITATIONS
73	Effects of methyl substitution on the auto-ignition of C16 alkanes. Combustion and Flame, 2016, 164, 259-269.	2.8	32
74	Multi-Technique Analysis of Soot Reactivity from Conventional and Paraffinic Diesel Fuels. Flow, Turbulence and Combustion, 2016, 96, 327-341.	1.4	32
75	Comparison between the kinetics of devolatilisation of forestry and agricultural wastes from the middle-south regions of Spain. Biomass and Bioenergy, 2007, 31, 13-19.	2.9	31
76	Overestimation of the fractal dimension from projections of soot agglomerates. Powder Technology, 2017, 311, 528-536.	2.1	31
77	High-pressure versus low-pressure exhaust gas recirculation in a Euro 6 diesel engine with lean-NOx trap: Effectiveness to reduce NOx emissions. International Journal of Engine Research, 2019, 20, 155-163.	1.4	31
78	Study of the compression cycle of a reciprocating engine through the polytropic coefficient. Applied Thermal Engineering, 2003, 23, 313-323.	3.0	30
79	Kinetic Modelling of Gaseous Emissions in a Diesel Engine. , 0, , .		29
80	Neural networks estimation of diesel particulate matter composition from transesterified waste oils blends. Fuel, 2005, 84, 2080-2085.	3.4	29
81	Improvement of the tribological behaviour of palm biodiesel via partial hydrogenation of unsaturated fatty acid methyl esters. Wear, 2019, 426-427, 813-818.	1.5	29
82	Properties and emission indicators of biodiesel fuels obtained from waste oils from the Turkish industry. Fuel, 2014, 128, 288-295.	3.4	28
83	Impact of branched structures on cycloalkane ignition in a motored engine: Detailed product and conformational analyses. Combustion and Flame, 2015, 162, 877-892.	2.8	28
84	Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine. Energy, 2015, 89, 148-157.	4.5	28
85	Strategies to Introduce n-Butanol in Gasoline Blends. Sustainability, 2017, 9, 589.	1.6	28
86	Properties of fatty acid glycerol formal ester (FAGE) for use as a component in blends for diesel engines. Biomass and Bioenergy, 2015, 76, 130-140.	2.9	27
87	Improvement of cold flow properties of a new biofuel derived from glycerol. Fuel, 2019, 242, 794-803.	3.4	27
88	Heat release determination in a constant volume combustion chamber from the instantaneous cylinder pressure. Applied Thermal Engineering, 2014, 63, 520-527.	3.0	26
89	Interaction of diesel engine soot with NO2 and O2 at diesel exhaust conditions. Effect of fuel and engine operation mode. Fuel, 2018, 212, 455-461.	3.4	26
90	Prediction of Flash-Point Temperature of Alcohol/Biodiesel/Diesel Fuel Blends. Industrial & Engineering Chemistry Research, 2019, 58, 6860-6869.	1.8	26

#	Article	IF	CITATIONS
91	Effect of hydrothermal carbonization on the properties, devolatilization, and combustion kinetics of Chilean biomass residues. Biomass and Bioenergy, 2019, 130, 105387.	2.9	24
92	Oxyfunctionalization of Turpentine for Fuel Applications. Energy & amp; Fuels, 2020, 34, 579-586.	2.5	24
93	Strategies for active diesel particulate filter regeneration based on late injection and exhaust recirculation with different fuels. International Journal of Engine Research, 2014, 15, 209-221.	1.4	23
94	Emission factors from different burning stages of agriculture wastes in Mexico. Environmental Science and Pollution Research, 2017, 24, 24297-24310.	2.7	22
95	Autoignition reactivity of blends of diesel and biodiesel fuels with butanol isomers. Journal of the Energy Institute, 2019, 92, 1223-1231.	2.7	22
96	Characterization of Soluble Organic Fraction in DPM: Optimization of the Extraction Method. , 1999, ,		21
97	Flame stability and OH and CH radical emissions from mixtures of natural gas with biomass gasification gas. Applied Thermal Engineering, 2013, 55, 133-139.	3.0	21
98	Reduction of snow albedo from vehicle emissions at Portillo, Chile. Cold Regions Science and Technology, 2018, 146, 43-52.	1.6	21
99	Analysis of Soot from the Use of Butanol Blends in a Euro 6 Diesel Engine. Energy & Fuels, 2019, 33, 2265-2277.	2.5	21
100	Influence of Mini-tunnel Operating Parameters and Ambient Conditions on Diesel Particulate Measurement and Analysis. , 1999, , .		20
101	Estimation of Cold Flow Performance and Oxidation Stability of Fatty Acid Ethyl Esters from Lipids Obtained from <i>Escherichia coli</i> . Energy & amp; Fuels, 2015, 29, 2493-2502.	2.5	20
102	Molecular interactions in blends of alcohols with diesel fuels: Effect on stability and distillation. Fuel, 2015, 139, 171-179.	3.4	20
103	Polycyclic Aromatic Hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: Quantification, statistical analysis and mechanisms of formation. Science of the Total Environment, 2017, 586, 446-456.	3.9	20
104	Characterization of biomass PM emissions using thermophoretic sampling: Composition and morphological description of the carbonaceous residues. Journal of Aerosol Science, 2019, 127, 49-62.	1.8	20
105	Hydrogenated Turpentine: A Biobased Component for Jet Fuel. Energy & Fuels, 2021, 35, 1465-1475.	2.5	20
106	Biomassâ€based heterogeneous catalysts for biodiesel production: A comprehensive review. International Journal of Energy Research, 2022, 46, 3782-3809.	2.2	20
107	Effect of advanced biofuels on WLTC emissions of a Euro 6 diesel vehicle with SCR under different climatic conditions. International Journal of Engine Research, 2021, 22, 3433-3446.	1.4	19
108	Modelling and Experimental Study About the Effect of Exhaust Gas Recirculation on Diesel Engine		18

Combustion and Emissions. , 1995, , .

#	Article	IF	CITATIONS
109	Online Emissions from a Vibrating Roller Using an Ethanolâ^'Diesel Blend during a Railway Construction. Energy & Fuels, 2009, 23, 2989-2996.	2.5	17
110	An equation for the estimation of alcohol-air diffusion coefficients for modelling evaporation losses in fuel systems. Applied Thermal Engineering, 2014, 73, 539-548.	3.0	17
111	Biomass quality control in power plants: Technical and economical implications. Renewable Energy, 2018, 115, 908-916.	4.3	17
112	Determination of optical and dielectric properties of blends of alcohol with diesel and biodiesel fuels from terahertz spectroscopy. Fuel, 2020, 274, 117877.	3.4	17
113	Progress in the Use of Biobutanol Blends in Diesel Engines. Energies, 2021, 14, 3215.	1.6	17
114	Investigation of the lubrication properties and tribological mechanisms of oxygenated compounds. Wear, 2017, 376-377, 836-842.	1.5	16
115	Autoignition of Alcohol/C7-Esters/ <i>n</i> -Heptane Blends in a Motored Engine under HCCI Conditions. Energy & Fuels, 2017, 31, 2985-2995.	2.5	16
116	Combustion of Poplar and Pine Pellet Blends in a 50 kW Domestic Boiler: Emissions and Combustion Efficiency. Energies, 2018, 11, 1580.	1.6	16
117	Effect of the Injection Parameters of a Common Rail Injection System on Diesel Combustion Through Thermodynamic Diagnosis. , 1999, , .		15
118	Molecular Characterization of the Gas–Particle Interface of Soot Sampled from a Diesel Engine Using a Titration Method. Environmental Science & Technology, 2016, 50, 2946-2955.	4.6	15
119	Modeling and simulation of a continuous biomass hydrothermal carbonization process. Chemical Engineering Communications, 2020, 207, 751-768.	1.5	15
120	Blending scenarios for soybean oil derived biofuels with conventional diesel. Biomass and Bioenergy, 2013, 49, 74-85.	2.9	14
121	Combined Impact of Branching and Unsaturation on the Autoignition of Binary Blends in a Motored Engine. Energy & Fuels, 2014, 28, 7203-7215.	2.5	14
122	Fouling Deposits from Residual Biomass with High Sodium Content in Power Plants. Energy & Fuels, 2015, 29, 5007-5017.	2.5	14
123	Optical determination of black carbon mass concentrations in snow samples: A new analytical method. Science of the Total Environment, 2019, 697, 133934.	3.9	14
124	Oxidation Stability: The Bottleneck for the Development of a Fully Renewable Biofuel from Wine Industry Waste. ACS Omega, 2020, 5, 16645-16653.	1.6	14
125	Thermochemical Behaviour of Producer Gas from Gasification of Lignocellulosic Biomass in SI Engines. , 2001, , .		13
126	Methodology for the analysis of pollutant emissions from a city bus. Measurement Science and Technology, 2012, 23, 045302.	1.4	13

#	Article	IF	CITATIONS
127	Modelling of evaporative losses in n-alcohol/diesel fuel blends. Applied Thermal Engineering, 2016, 102, 302-310.	3.0	13
128	Hydrogenated orange oil: A waste derived drop-in biojet fuel. Renewable Energy, 2022, 188, 1049-1058.	4.3	13
129	The Suitability of Fatty Acid Methyl Esters (FAME) as Blending Agents in Jet A-1. , 2016, , 47-84.		12
130	Impact of oxyfunctionalized turpentine on emissions from a Euro 6 diesel engine. Energy, 2020, 201, 117645.	4.5	12
131	Life cycle assessment for hydrothermal carbonization of urban organic solid waste in comparison with gasification process: A case study of Southern Chile. Environmental Progress and Sustainable Energy, 2021, 40, e13688.	1.3	12
132	Hydrogenated or oxyfunctionalized turpentine: options for automotive fuel components. RSC Advances, 2021, 11, 18342-18350.	1.7	12
133	A combustion kinetic model for estimating diesel engine NOxemissions. Combustion Theory and Modelling, 2006, 10, 639-657.	1.0	11
134	Snow Surface Albedo Sensitivity to Black Carbon: Radiative Transfer Modelling. Atmosphere, 2020, 11, 1077.	1.0	11
135	Experimental Study on Hydrothermal Carbonization of Lignocellulosic Biomass with Magnesium Chloride for Solid Fuel Production. Processes, 2020, 8, 444.	1.3	11
136	Optimization of a diesel engine calibration for operating with a residual glycerol-derived biofuel. International Journal of Engine Research, 2021, 22, 1273-1284.	1.4	10
137	Modeling of the Soot Accumulation in DPF Under Typical Vehicle Operating Conditions. SAE International Journal of Fuels and Lubricants, 2010, 3, 532-542.	0.2	9
138	Fatty acid methyl and ethyl esters obtained from rare seeds from Tunisia: <i>Ammi visnaga, Citrullus colocynthis, Datura stramonium, Ecballium elaterium</i> , and <i>Silybum marianum</i> . Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 93-99.	1.2	9
139	Surface tension of diesel-alcohol blends: Selection among fundamental and empirical models. Fluid Phase Equilibria, 2022, 555, 113363.	1.4	9
140	Morphological characterization of diesel soot agglomerates based on the Beer–Lambert law. Measurement Science and Technology, 2013, 24, 035405.	1.4	8
141	Vehicle Emissions from a Glycerol-Derived Biofuel under Cold and Warm Conditions. Energy & Fuels, 2020, 34, 6020-6029.	2.5	8
142	Improvements of Thermal and Thermochemical Properties of Rosin by Chemical Transformation for Its Use as Biofuel. Waste and Biomass Valorization, 2020, 11, 6383-6394.	1.8	6
143	Albedo reduction for snow surfaces contaminated with soot aerosols: Comparison of experimental results and models. Aerosol Science and Technology, 2022, 56, 847-858.	1.5	6
144	Effect of sintering on the fractal prefactor of agglomerates. Powder Technology, 2015, 271, 141-154.	2.1	5

#	Article	IF	CITATIONS
145	Oxyfunctionalized turpentine: Evaluation of properties as automotive fuel. Renewable Energy, 2020, 162, 2210-2219.	4.3	5
146	WLTC and real-driving emissions for an autochthonous biofuel from wine-industry waste. Scientific Reports, 2021, 11, 7528.	1.6	5
147	Autoignition of ethanol-diesel blends: Is it worth dehydrating ethanol?. Fuel, 2022, 317, 123523.	3.4	4
148	Techno-economic, life cycle, and environmental cost assessment of biojet fuel obtained from <i>Pinus pinaster</i> by turpentine hydrogenation. Sustainable Energy and Fuels, 2022, 6, 2478-2489.	2.5	4
149	Fatty acid methyl esters (FAME) from oleaginous seeds grown in arid lands. Part II: <i><i>lbicella lutea</i>, <i>Onopordum nervosum</i>, <i>Peganum harmala</i>, <i>Smyrnium olusatrum</i></i> and <i><i>Solanum elaeagnifolium</i></i> . Energy Sources, Part A: Recovery, Utilization and Environmental Effects. 2018. 40. 1434-1441.	1.2	3
150	Influence of molecular structure of oleoresin-derived compounds on flame properties and emissions from laminar flames. Environmental Science and Pollution Research, 2020, 27, 33890-33902.	2.7	3
151	Comparison of equations used to estimate soot agglomerate absorption efficiency with the Rayleigh-Debye-Gans approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 262, 107522.	1.1	3
152	Estimation of Diesel Particulate Emissions from Hydrocarbon Emissions and Smoke Opacity. , 2004, , 487-501.		2
153	Comparison of quartz tuning forks and AlN-based extensional microresonators for viscosity measurements in oil/fuel mixtures. , 2013, , .		2
154	Are Cold Filter Plugging Point and Cloud Point reliable enough to prevent cold-start operability problems in vehicles using biodiesel blends?. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 2305-2311.	1.1	2
155	Impact of Vehicle Soot Agglomerates on Snow Albedo. Atmosphere, 2022, 13, 801.	1.0	2
156	A Novel Group-based Correlation for the Ignition Delay Time of Paraffinic-type Fuels. Combustion Science and Technology, 2022, 194, 80-92.	1.2	1
157	Study on the Combustion Process of a 2 Liter Supercharged Intercooled D.I. Diesel Engine, Based on Experimental and Modelled Results. , 1992, , .		0
158	Relaxation Dynamics of Ethanol and N-Butanol in Diesel Fuel Blends from Terahertz Spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 772-792.	1.2	0
159	Effect of Exhausted Olive Cake Contamination on Fly and Bottom Ash in Power Plants. Waste and Biomass Valorization, 2022, 13, 1759-1778.	1.8	0