Dinesh O Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11575194/publications.pdf

Version: 2024-02-01

71102 74163 6,087 117 41 75 citations h-index g-index papers 118 118 118 4951 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of Degree, Type, and Position of Unsaturation on the pKa of Long-Chain Fatty Acids. Journal of Colloid and Interface Science, 2002, 256, 201-207.	9.4	439
2	Binding of metal ions to monolayers of lecithins, plasmalogen, cardiolipin, and dicetyl phosphate. Journal of Lipid Research, 1965, 6, 341-349.	4.2	272
3	Influence of calcium, cholesterol, and unsaturation on lecithin monolayers. Journal of Lipid Research, 1967, 8, 215-226.	4.2	254
4	Importance of Micellar Kinetics in Relation to Technological Processes. Journal of Colloid and Interface Science, 2002, 245, 1-15.	9.4	221
5	Spontaneous Emulsification: Mechanisms, Physicochemical Aspects, Modeling, and Applications. Journal of Dispersion Science and Technology, 2002, 23, 219-268.	2.4	196
6	A review on therapeutic contact lenses for ocular drug delivery. Drug Delivery, 2016, 23, 3017-3026.	5.7	178
7	Prediction of Critical Micelle Concentration Using a Quantitative Structureâ "Property Relationship Approach. 1. Nonionic Surfactants. Langmuir, 1996, 12, 1462-1470.	3 . 5	174
8	The ionic structure of lecithin monolayers. Journal of Lipid Research, 1967, 8, 227-233.	4.2	164
9	In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. Journal of Controlled Release, 2016, 226, 47-56.	9.9	158
10	Solubilization and phase equilibria of water-in-oil microemulsions. Journal of Colloid and Interface Science, 1987, 120, 330-344.	9.4	153
11	Dynamic properties of micellar solutions. Journal of Colloid and Interface Science, 1986, 113, 484-499.	9.4	130
12	Effect of counterions on surface and foaming properties of dodecyl sulfate. Journal of Colloid and Interface Science, 2003, 267, 160-166.	9.4	124
13	Effect of Long Chain Alcohols on Micellar Relaxation Time and Foaming Properties of Sodium Dodecyl Sulfate Solutions. Journal of Colloid and Interface Science, 1998, 208, 259-265.	9.4	118
14	Predicting Surfactant Cloud Point from Molecular Structure. Journal of Colloid and Interface Science, 1997, 193, 132-136.	9.4	110
15	Evidence for Synergism in Nonionic Surfactant Mixtures:  Enhancement of Solubilization in Water-in-Oil Microemulsions. Langmuir, 1997, 13, 5762-5765.	3.5	106
16	Cloud Point Phenomenon in Amphiphilic Drug Solutions. Langmuir, 2002, 18, 10105-10108.	3.5	102
17	Significance of the 1:3 molecular ratio in mixed surfactant systems. Journal of Colloid and Interface Science, 1971, 37, 744-752.	9.4	99
18	Pluronic Microemulsions as Nanoreservoirs for Extraction of Bupivacaine from Normal Saline. Journal of the American Chemical Society, 2004, 126, 5108-5112.	13.7	98

#	Article	IF	Citations
19	Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. Journal of Colloid and Interface Science, 2013, 407, 493-499.	9.4	96
20	Enzymic hydrolysis of various lecithin monolayers employing surface pressure and potential technique. Journal of Colloid and Interface Science, 1967, 25, 107-119.	9.4	94
21	Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: In vitro and in vivo evaluation. Acta Biomaterialia, 2019, 86, 350-362.	8.3	85
22	Interaction of calcium ions with lecithin and sphingomyelin monolayers. Lipids, 1967, 2, 21-27.	1.7	77
23	Correlation of Particulate Dispersion Stability with the Strength of Self-Assembled Surfactant Films. Langmuir, 2000, 16, 7255-7262.	3.5	68
24	Optimization of a novel in situ gel for sustained ocular drug delivery using Box-Behnken design: In vitro, ex vivo, in vivo and human studies. International Journal of Pharmaceutics, 2019, 554, 264-275.	5.2	68
25	Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 1035-1050.	3.5	67
26	Oil-Filled Silica Nanocapsules for Lipophilic Drug Uptake:Â Implications for Drug Detoxification Therapy. Chemistry of Materials, 2002, 14, 4919-4925.	6.7	63
27	Design and optimization of a novel implantation technology in contact lenses for the treatment of dry eye syndrome: In vitro and in vivo evaluation. Acta Biomaterialia, 2017, 53, 211-221.	8.3	63
28	Relationship between micellar lifetime and foamability of sodium dodecyl sulfate and sodium dodecyl sulfate/1-hexanol mixtures. Langmuir, 1991, 7, 1316-1318.	3.5	62
29	pH triggered controlled drug delivery from contact lenses: Addressing the challenges of drug leaching during sterilization and storage. Colloids and Surfaces B: Biointerfaces, 2017, 157, 72-82.	5.0	61
30	Multiple drug delivery from the drug-implants-laden silicone contact lens: Addressing the issue of burst drug release. Materials Science and Engineering C, 2020, 112, 110885.	7. 3	60
31	Effect of organic modifiers on dispersion of organoclay in polymer nanocomposites to improve mechanical properties. Polymer, 2016, 97, 525-532.	3.8	59
32	Stabilization of High Ionic Strength Slurries Using the Synergistic Effects of a Mixed Surfactant System. Journal of Colloid and Interface Science, 2000, 223, 102-111.	9.4	57
33	Contact lenses with dual drug delivery for the treatment of bacterial conjunctivitis. International Journal of Pharmaceutics, 2018, 548, 139-150.	5.2	57
34	Multispectral Determination of Soap Film Thickness. Langmuir, 1997, 13, 5995-5998.	3.5	55
35	Co-delivery of timolol and hyaluronic acid from semi-circular ring-implanted contact lenses for the treatment of glaucoma: <i>in vitro</i> and <i>in vivo</i> evaluation. Biomaterials Science, 2018, 6, 1580-1591.	5.4	55
36	Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses. International Journal of Pharmaceutics, 2017, 524, 193-204.	5.2	52

#	Article	IF	Citations
37	Cyclosporine laden tailored microemulsion-gel depot for effective treatment of psoriasis: In vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110681.	5.0	50
38	Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 2016, 27, 113.	3.6	49
39	Interaction of ionic liquid type cationic surfactants with triton X-100 nonionic micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 547-557.	4.7	46
40	Importance of 1:3 Molecular Ratio on the Interfacial Properties of Mixed Surfactant Systems. Langmuir, 1999, 15, 7403-7405.	3.5	45
41	Bioavailability enhancement of repaglinide from transdermally applied nanostructured lipid carrier gel: Optimization, in vitro and in vivo studies. Journal of Drug Delivery Science and Technology, 2020, 57, 101731.	3.0	44
42	Tailored gatifloxacin Pluronic \hat{A}^{\otimes} F-68-loaded contact lens: Addressing the issue of transmittance and swelling. International Journal of Pharmaceutics, 2020, 581, 119279.	5.2	44
43	Isolation and characterization of a lung lipoprotein surfactant. Journal of Colloid and Interface Science, 1969, 29, 319-334.	9.4	42
44	Surface Chemistry of Lipids1 1Lamont-Doherty Geological Observatory Contribution No. 1516 Advances in Lipid Research, 1970, 8, 347-431.	1.8	42
45	Interaction of uranyl ions with phospholipid and cholesterol monolayers. Journal of Colloid and Interface Science, 1969, 29, 210-215.	9.4	41
46	Preparation and Anesthetic Properties of Propofol Microemulsions in Rats. Anesthesiology, 2006, 104, 1184-1190.	2.5	40
47	A Cloud Point Study on the Micellar Growth of an Amphiphilic Drug in the Presence of Alcohol and Ionic Surfactant. Journal of Physical Chemistry B, 2003, 107, 8689-8693.	2.6	39
48	The effect of cosurfactants on sodium dodecyl sulfate micellar structures at a graphite surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 272, 157-163.	4.7	39
49	Filtration of Nanoparticles with Dimethyldioctadecylammonium Bromide Treated Microporous Polypropylene Filters. Langmuir, 1997, 13, 1820-1826.	3.5	38
50	Plackett-Burman design for screening of critical variables and their effects on the optical transparency and swelling of gatifloxacin-Pluronic-loaded contact lens. International Journal of Pharmaceutics, 2019, 566, 513-519.	5.2	38
51	The ionic structure of sphingomyelin monolayers. Biochimica Et Biophysica Acta - Biomembranes, 1967, 135, 184-187.	2.6	36
52	Influence of Induced Dipoles, Metal Ions, and Cholesterol on the Characteristics of Phospholipid Monolayers. Advances in Chemistry Series, 1968, , 189-209.	0.6	34
53	A novel method to quantify the amount of surfactant at the oil/water interface and to determine total interfacial area of emulsions. Journal of Colloid and Interface Science, 2007, 310, 590-598.	9.4	34
54	Sustained release of venlafaxine from venlafaxine–montmorillonite–polyvinylpyrrolidone composites. Applied Clay Science, 2011, 51, 126-130.	5.2	34

#	Article	IF	Citations
55	A novel approach for selective cross aldol condensation using reusable NaOH-cationic micellar systems. Applied Catalysis A: General, 2013, 466, 38-44.	4.3	33
56	Molecular mechanism of micellar catalysis of cross aldol reaction: Effect of surfactant chain length and surfactant concentration. Journal of Molecular Catalysis A, 2015, 396, 143-154.	4.8	33
57	Lidocaine tripotassium phosphate complex laden microemulsion for prolonged local anaesthesia: In vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110632.	5.0	33
58	Novel Poly(vinylpyrrolidone)-Coated Silicone Contact Lenses to Improve Tear Volume During Lens Wear: In Vitro and In Vivo Studies. ACS Omega, 2020, 5, 18148-18154.	3.5	33
59	Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. International Journal of Pharmaceutics, 2021, 608, 121105.	5.2	32
60	Extended Release of Timolol from Ethyl Cellulose Microparticles Laden Hydrogel Contact Lenses. Open Pharmaceutical Sciences Journal, 2015, 2, 1-12.	2.1	32
61	Treatment of Local Anesthetic-Induced Cardiotoxicity Using Drug Scavenging Nanoparticles. Nano Letters, 2004, 4, 757-759.	9.1	31
62	Effect of long-chain alcohols on SDS partitioning to the oil/water interface of emulsions and on droplet size. Journal of Colloid and Interface Science, 2007, 315, 307-312.	9.4	31
63	Wettability measurement apparatus for porous material using the modified Washburn method. Measurement Science and Technology, 2013, 24, 125902.	2.6	30
64	Mechanism of organic pollutants sorption from aqueous solution by cationic tunable organoclays. Journal of Colloid and Interface Science, 2018, 529, 90-99.	9.4	30
65	Stability of Sodium Dodecyl Sulfate Micelles in the Presence of a Range of Water-Soluble Polymers:  A Pressure-Jump Study. Journal of Physical Chemistry B, 2001, 105, 7133-7138.	2.6	29
66	Anesthetic Properties of a Propofol Microemulsion in Dogs. Anesthesia and Analgesia, 2006, 103, 882-887.	2.2	29
67	Effect of surfactants on the cloud point of amphiphilic drug solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 227, 105-111.	4.7	27
68	QSPR study of the first and second critical micelle concentrations of cationic surfactants. Computers and Chemical Engineering, 2009, 33, 321-332.	3.8	27
69	Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. International Journal of Pharmaceutics, 2021, 608, 121090.	5.2	27
70	Microstructure of the CTAB–butanol–octane–water microemulsion system: effect of dissolved salts. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3585-3589.	1.7	26
71	Determination of Drug and Fatty Acid Binding Capacity to Pluronic F127 in Microemulsions. Langmuir, 2007, 23, 1640-1644.	3.5	26
72	Activity of microemulsion-based nanoparticles at the human bio-nano interface: concentration-dependent effects on thrombosis and hemolysis in whole blood. Journal of Nanoparticle Research, 2004, 6, 159-170.	1.9	25

#	Article	IF	CITATIONS
73	FTIR–ATR studies of water structure in reverse micelles during the synthesis of oxalate precursor nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 232, 93-99.	4.7	24
74	Oral bioavailability improvement of felodipine using tailored microemulsion: Surface science, ex vivo and in vivo studies. International Journal of Pharmaceutics, 2021, 596, 120202.	5.2	24
75	Tailored Doxycycline Hyclate Loaded In Situ Gel for the Treatment of Periodontitis: Optimization, In Vitro Characterization, and Antimicrobial Studies. AAPS PharmSciTech, 2021, 22, 77.	3.3	23
76	Correlation of Dynamic Surface Tension with Sedimentation of PTFE Particles and Water Penetration in Powders. Langmuir, 2015, 31, 13725-13733.	3.5	22
77	Correlation of chain length compatibility and surface properties of mixed foaming agents with fluid displacement efficiency and effective air mobility in porous media. Industrial & Engineering Chemistry Fundamentals, 1984, 23, 213-220.	0.7	20
78	Novel Strategy Involving Surfactant–Polymer Combinations for Enhanced Stability of Aqueous Teflon Dispersions. Langmuir, 2014, 30, 7077-7084.	3.5	20
79	Adsorption of nonionic Brij and Tween surfactants at PTFE-water and air-water interfaces: Investigations on wetting, dispersion stability, foaming and drug solubilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 159-166.	4.7	19
80	Organobase catalysis using 1-(2-pyrimidyl)piperazine in micellar medium: an approach for better performance and reusability of organobase. Green Chemistry, 2016, 18, 1339-1354.	9.0	19
81	The effect of buffer ions on stearic acid monolayers in relation to foam stability. Journal of Colloid and Interface Science, 1970, 32, 570-576.	9.4	18
82	Surfactants and protocols to induce spontaneous emulsification and enhance detergency. Journal of Surfactants and Detergents, 2005, 8, 45-53.	2.1	18
83	Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: Optimization, ex vivo and animal studies. Journal of Drug Delivery Science and Technology, 2021, 63, 102441.	3.0	18
84	On thermodynamics of mixed monolayers. Journal of Colloid and Interface Science, 1968, 27, 319-320.	9.4	17
85	Lipid-protein interaction in monolayers. Effect of conformation of poly-l-lysine on stearic acid monolayers. Biochimica Et Biophysica Acta - Biomembranes, 1969, 193, 217-220.	2.6	17
86	Molecular interactions in mixed monolayers: Existence of a 1:2 molecular association between stearic acid and stearyl alcohol in mixed monolayers. Journal of Colloid and Interface Science, 1970, 32, 577-583.	9.4	17
87	Effect of Poly(ethylene glycol)s on Micellar Stability of Sodium Dodecyl Sulfate. Langmuir, 2001, 17, 7233-7236.	3.5	16
88	Controlled bimatoprost release from graphene oxide laden contact lenses: In vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112096.	5.0	16
89	Alkyl "chain length compatibility―and solubilization in water-in-oil microemulsions. Journal of Colloid and Interface Science, 1986, 111, 286-287.	9.4	14
90	Effect of micellar lifetime on the wetting time of cotton in sodium dodecyl sulfate solutions. Langmuir, 1992, 8, 1232-1233.	3.5	14

#	Article	IF	Citations
91	Molecular interactions in monolayers: Molecular association and foam stability of fatty acids and alcohols. JAOCS, Journal of the American Oil Chemists' Society, 1969, 46, 645-648.	1.9	13
92	Effect of Surfactant Concentration and Film Area on the Stability of Films of Surfactant Solutions. Journal of Colloid and Interface Science, 1996, 183, 603-606.	9.4	13
93	Study on catalytic property of NaOH-cationic surfactant solutions for efficient, green and selective synthesis of flavanone. Journal of Molecular Liquids, 2015, 210, 151-159.	4.9	13
94	Importance of Dynamic Surface Tension to the Residual Water Content of Fabrics. Langmuir, 2005, 21, 10106-10111.	3.5	12
95	Effect of the Chain-Length Compatibility of Surfactants and Mechanical Properties of Mixed Micelles on Surfaces. Langmuir, 2006, 22, 6858-6862.	3.5	12
96	CLOUD POINT AND DYE SOLUBILIZATION STUDIES OF AMPHIPHILIC DRUG SOLUTIONS: THE EFFECT OF ELECTROLYTES AND NONELECTROLYTES. Chemical Engineering Communications, 2006, 193, 1065-1074.	2.6	12
97	The effects of potassium permanganate on lecithin and choleterol monolayers. Biochimica Et Biophysica Acta - Biomembranes, 1970, 211, 358-361.	2.6	11
98	In vitro and in vivo evaluation of cyclosporine-graphene oxide laden hydrogel contact lenses. International Journal of Pharmaceutics, 2022, 613, 121414.	5.2	11
99	Role of Ethylene Oxide and Propylene Oxide Groups of Pluronics in Binding of Fatty Acid to Pluronics in Microemulsions. Journal of Surfactants and Detergents, 2008, 11, 237-242.	2.1	9
100	Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films. Frontiers of Materials Science, 2016, 10, 1-7.	2.2	9
101	Thermoresponsive liquid crystalline formulation of Exemestane: Design and structural characterization. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111683.	5.0	9
102	Effect of chain length on binding of fatty acids to Pluronics in microemulsions. Colloids and Surfaces B: Biointerfaces, 2008, 62, 5-10.	5.0	8
103	The Effect on Solution Properties of Replacing a Hydrogen Atom with a Methyl Group in a Surfactant. Tenside, Surfactants, Detergents, 2015, 52, 369-374.	1.2	8
104	Surface and colloidal properties of chalks: A novel approach using surfactants to convert normal chalks into dustless chalks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 236-244.	4.7	6
105	Effect of molecular weight and diffusivity on the adsorption of PEO-PPO-PEO block copolymers at PTFE-water and oil-water interfaces. Colloid and Polymer Science, 2018, 296, 1333-1340.	2.1	6
106	Lipid-Polymer Interaction in Monolayers: Effect of Conformation of Poly-L-Lysine on Stearic Acid Monolayers. Advances in Experimental Medicine and Biology, 1970, , 101-117.	1.6	6
107	Lipid-Protein Association in Lung Surfactant. Advances in Experimental Medicine and Biology, 1970, , 261-274.	1.6	5
108	Timolol-eluting graphene oxide laden silicone contact lens: Control release profile with improved critical lens properties. Journal of Drug Delivery Science and Technology, 2022, 69, 103134.	3.0	5

#	Article	IF	CITATIONS
109	Synthesis of Calcium Carbonate-Coated Emulsion Droplets for Drug Detoxification. ACS Symposium Series, 2004, , 15-25.	0.5	4
110	Thromboelastographic and pharmacokinetic profiles of micro―and macro―mulsions of propofol in swine. Biopharmaceutics and Drug Disposition, 2010, 31, 269-277.	1.9	4
111	Controlled release of steroids through microporous membranes with sodium dodecyl sulfate micelles. Pharmaceutical Research, 1989, 06, 239-243.	3.5	3
112	Mass transfer studies on multiple emulsion as a controlled mass release system. Korean Journal of Chemical Engineering, 1990, 7, 163-168.	2.7	3
113	Submicellar aggregates in aqueous sodium dodecyl sulphate solutions: Investigations by dynamic light scattering and water penetration through porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 331-337.	4.7	3
114	Title is missing!. Journal of Nanoparticle Research, 2002, 4, 179-179.	1.9	1
115	Reactions and Molecular Interactions at Interfaces. , 1973, , 69-117.		1
116	Fluid displacement efficiency of in-situ foam: A mechanism of foam propagation in porous media. Journal of Petroleum Science and Engineering, 1989, 3, 209-217.	4.2	0
117	The correlation of hydrophile ―lipophile balance of filters with virus desorption. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1991, 26, 711-719.	0.1	O