
Jasper Bloemen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11574676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research frontiers for improving our understanding of droughtâ€induced tree and forest mortality. New Phytologist, 2018, 218, 15-28.	7.3	334
2	Transport of rootâ€respired CO ₂ via the transpiration stream affects aboveground carbon assimilation and CO ₂ efflux in trees. New Phytologist, 2013, 197, 555-565.	7.3	128
3	Xylem embolism refilling and resilience against droughtâ€induced mortality in woody plants: processes and tradeâ€offs. Ecological Research, 2018, 33, 839-855.	1.5	116
4	Woody tissue photosynthesis in trees: salve on the wounds of drought?. New Phytologist, 2015, 208, 998-1002.	7.3	73
5	How important is woody tissue photosynthesis in poplar during drought stress?. Trees - Structure and Function, 2016, 30, 63-72.	1.9	62
6	Stem girdling affects the quantity of CO 2 transported in xylem as well as CO 2 efflux from soil. New Phytologist, 2014, 201, 897-907.	7.3	37
7	Assimilation of xylem-transported CO2 is dependent on transpiration rate but is small relative to atmospheric fixation. Journal of Experimental Botany, 2013, 64, 2129-2138.	4.8	34
8	Internal recycling of respired CO ₂ may be important for plant functioning under changing climate regimes. Plant Signaling and Behavior, 2013, 8, e27530.	2.4	22
9	Root xylem CO2 flux: an important but unaccounted-for component of root respiration. Trees - Structure and Function, 2016, 30, 343-352.	1.9	18
10	Fate of xylemâ€transported <scp>¹¹C</scp> ―and <scp>¹³C</scp> â€labeled <scp>CO₂</scp> in leaves of poplar. Physiologia Plantarum, 2015, 153, 555-564.	5.2	17
11	Respiration and CO2 Fluxes in Trees. Advances in Photosynthesis and Respiration, 2017, , 181-207.	1.0	12
12	Axial diffusion of respired CO2 confounds stem respiration estimates during the dormant season. Annals of Forest Science, 2019, 76, 1.	2.0	11
13	High-Resolution in vivo Imaging of Xylem-Transported CO2 in Leaves Based on Real-Time 11C-Tracing. Frontiers in Forests and Global Change, 2019, 2, .	2.3	9