Yudong Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/115745/publications.pdf

Version: 2024-02-01

		1040056	1058476	
14	186	9	14	
papers	citations	h-index	g-index	
14	14	14	233	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Primordial germ cell–like cells derived from canine adipose mesenchymal stem cells. Cell Proliferation, 2016, 49, 503-511.	5.3	40
2	Melatonin alleviates LPSâ€induced endoplasmic reticulum stress and inflammation in spermatogonial stem cells. Journal of Cellular Physiology, 2021, 236, 3536-3551.	4.1	20
3	CD61 promotes the differentiation of canine ADMSCs into PGC-like cells through modulation of TGF- \hat{l}^2 signaling. Scientific Reports, 2017, 7, 43851.	3.3	16
4	Immortalization of canine adiposeâ€derived mesenchymal stem cells and their seminiferous tubule transplantation. Journal of Cellular Biochemistry, 2018, 119, 3663-3670.	2.6	16
5	miRâ€19bâ€3p induces cell proliferation and reduces heterochromatinâ€mediated senescence through PLZF in goat male germline stem cells. Journal of Cellular Physiology, 2018, 233, 4652-4665.	4.1	15
6	Double sex and mabâ€3 related transcription factor 1 regulates differentiation and proliferation in dairy goat male germline stem cells. Journal of Cellular Physiology, 2018, 233, 2537-2548.	4.1	12
7	Characterization of female germline stem cells from adult mouse ovaries and the role of rapamycin on them. Cytotechnology, 2018, 70, 843-854.	1.6	10
8	miR-19b-3p integrates Jak-Stat signaling pathway through Plzf to regulate self-renewal in dairy goat male germline stem cells. International Journal of Biochemistry and Cell Biology, 2018, 105, 104-114.	2.8	10
9	<i>LIN28A</i> activates the transcription of <i>NANOG</i> in dairy goat male germline stem cells. Journal of Cellular Physiology, 2019, 234, 8113-8121.	4.1	10
10	<i>PAX7</i> promotes CD49fâ€positive dairy goat spermatogonial stem cells' selfâ€renewal. Journal of Cellular Physiology, 2021, 236, 1481-1493.	4.1	9
11	Interaction between DMRT1 and PLZF protein regulates self-renewal and proliferation in male germline stem cells. Molecular and Cellular Biochemistry, 2021, 476, 1123-1134.	3.1	9
12	Functions of promyelocytic leukaemia zinc finger (Plzf) in male germline stem cell development and differentiation. Reproduction, Fertility and Development, 2019, 31, 1315.	0.4	8
13	SerpinB1 promotes the proliferation of porcine pancreatic stem cells through the STAT3 signaling pathway. Journal of Steroid Biochemistry and Molecular Biology, 2020, 198, 105537.	2.5	7
14	Eif2s3y Promotes the Proliferation of Spermatogonial Stem Cells by Activating ERK Signaling. Stem Cells International, 2021, 2021, 1-18.	2.5	4