Daniel Jun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11574481/publications.pdf

Version: 2024-02-01

		1163117	940533
18	488	8	16
papers	citations	h-index	g-index
19	19	19	802
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution. ELife, 2018, 7, .	6.0	119
2	A DNA-Directed Light-Harvesting/Reaction Center System. Journal of the American Chemical Society, 2014, 136, 16618-16625.	13.7	100
3	Reengineering the Optical Absorption Cross-Section of Photosynthetic Reaction Centers. Journal of the American Chemical Society, 2014, 136, 4599-4604.	13.7	62
4	Hybrid Wiring of the <i>Rhodobacter sphaeroides</i> Reaction Center for Applications in Bio-photoelectrochemical Solar Cells. Journal of Physical Chemistry C, 2014, 118, 23509-23518.	3.1	44
5	Large Photocurrent Response and External Quantum Efficiency in Biophotoelectrochemical Cells Incorporating Reaction Center Plus Light Harvesting Complexes. Biomacromolecules, 2015, 16, 1112-1118.	5.4	43
6	The Role of Gold-Adsorbed Photosynthetic Reaction Centers and Redox Mediators in the Charge Transfer and Photocurrent Generation in a Bio-Photoelectrochemical Cell. Journal of Physical Chemistry C, 2012, 116, 24868-24877.	3.1	34
7	Photoactive Electrodes Incorporating Electrosprayed Bacterial Reaction Centers. Advanced Functional Materials, 2014, 24, 4789-4794.	14.9	32
8	A ZnO nanowire bio-hybrid solar cell. Nanotechnology, 2017, 28, 054006.	2.6	18
9	Electrochemical Field-Effect Transistor Utilization to Study the Coupling Success Rate of Photosynthetic Protein Complexes to Cytochrome c. Biosensors, 2017, 7, 16.	4.7	8
10	Introduction of the Menaquinone Biosynthetic Pathway into <i>Rhodobacter sphaeroides</i> and <i>de Novo</i> Synthesis of Menaquinone for Incorporation into Heterologously Expressed Integral Membrane Proteins. ACS Synthetic Biology, 2020, 9, 1190-1200.	3.8	7
11	Highly Sensitive Method to Isolate Photocurrent Signals from Large Background Redox Currents on Proteinâ€Modified Electrodes. ChemElectroChem, 2019, 6, 2870-2875.	3.4	5
12	Bio-Phototransistors with Immobilized Photosynthetic Proteins. Electronics (Switzerland), 2020, 9, 1709.	3.1	4
13	Application of Wide Band Gap Semiconductors to Increase Photocurrent in a Protein Based Photovoltaic Device. Materials Research Society Symposia Proceedings, 2012, 1414, 38.	0.1	3
14	Free-floating Reaction Centers (RCs) versus Attached Monolayer of RCs in Bio-photoelectrochemical Cells. Materials Research Society Symposia Proceedings, 2012, 1414, 1.	0.1	3
15	Photosynthetic Reaction Center Immobilization through Carboxylic Acid TerminatedCytochrome C Linker for Applications in Photoprotein-based Bio-photovoltaic Devices. Materials Research Society Symposia Proceedings, 2013, 1572, 1.	0.1	3
16	Correlating structural assemblies of photosynthetic reaction centers on a gold electrode and the photocurrent - potential response. IScience, 2021, 24, 102500.	4.1	3
17	Ion-sensitive field-effect transistors with Si3N4 and TaO2 gate insulator for studying self-assembly of photosynthetic proteins. , 2019, , .		O
18	Purification and preparation of Rhodobacter sphaeroides reaction centers for photocurrent measurements and atomic force microscopy characterization. STAR Protocols, 2022, 3, 101044.	1.2	0