
Liping Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/115729/publications.pdf Version: 2024-02-01

LIDING DING

#	Article	IF	CITATIONS
1	NiFe (sulfur)oxyhydroxide porous nanoclusters/Ni foam composite electrode drives a large-current-density oxygen evolution reaction with an ultra-low overpotential. Journal of Materials Chemistry A, 2019, 7, 18816-18822.	10.3	30
2	Highly Stretchable, Ultratough, and Strong Polyesters with Improved Postcrystallization Optical Property Enabled by Dynamic Multiple Hydrogen Bonds. Macromolecules, 2021, 54, 1254-1266.	4.8	28
3	A facile oxidation–dehydration reaction-driven robust porous copper oxide nanobelt coating on copper foam for an energy-saving and low-cost urea oxidization reaction. Chemical Communications, 2019, 55, 13562-13565.	4.1	19
4	Conductive silver coatings with ultra-low silver consumption on polyimide film via a mild surface ion exchange self-metallization method. Journal of Materials Chemistry C, 2017, 5, 10630-10637.	5.5	10
5	Study on the Behavior of BOPP Film Treated by Corona Discharge. Coatings, 2020, 10, 1195.	2.6	10
6	Plant-Inspired Layer-by-Layer Self-Assembly of Super-Hydrophobic Coating for Oil Spill Cleanup. Polymers, 2019, 11, 2047.	4.5	5
7	Properties of poly(butylene-co-isosorbide succinate) after blown film extrusion. Green Materials, 2020, 8, 68-78.	2.1	4
8	Low-cost valence-rich copper–iron–sulfur–oxygen porous nanocluster that drives an exceptional energy-saving carbohydrazide oxidization reaction in alkali and near-neutral electrolytes. Journal of Materials Chemistry A, 2020, 8, 24419-24427.	10.3	4
9	Lasting high surface energy coâ€polyester ionomer and its application in laminated tinâ€free steel. Journal of Applied Polymer Science, 2017, 134, 45174.	2.6	1
10	In situ synthesis of poly(ethylene terephthalate-co-isophthalate)–SiO2 nanocomposites and their optical properties. Polymer Science - Series B, 2017, 59, 630-638.	0.8	1
11	Preparation of Super-Hydrophobic 3D Porous Nanocomposites by One Step Reaction at Room Temperature for Water Treatment. Coatings, 2021, 11, 521.	2.6	1
12	An Extreme Energy-Saving Carbohydrazide Oxidization Reaction Directly Driven by Commercial Graphite Paper in Alkali and Near-Neutral Seawater Electrolytes. ACS Omega, 2021, 6, 15737-15741.	3.5	1
13	Room temperature thiosulfate ion redox reaction-driven synthesis of a robust porous copper–cobalt–sulfur–oxygen nanowire coating on copper foam for highly-efficient and low-cost oxygen evolution reaction. Chemical Communications, 2019, 55, 8587-8590.	4.1	0