C Kent Osborne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11571190/publications.pdf

Version: 2024-02-01

4955 5384 38,312 184 84 164 citations h-index g-index papers 185 185 185 29472 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biomarkers of Response and Resistance to Palbociclib Plus Letrozole in Patients With ER+/HER2â ² Breast Cancer. Clinical Cancer Research, 2022, 28, 163-174.	3.2	8
2	Abstract PD1-05: Targeting the FRA1-dependent transcriptional nexus in high FOXA1-driven endocrine-resistant and metastatic breast cancer. Cancer Research, 2022, 82, PD1-05-PD1-05.	0.4	O
3	Abstract PD8-06: Acquired resistance to tucatinib is associated with EGFR amplification in HER2+ breast cancer (BC) models and can be overcome by a more complete blockade of HER receptor layer. Cancer Research, 2022, 82, PD8-06-PD8-06.	0.4	1
4	Abstract OT1-18-07: A randomized, multicenter, placebo-controlled, phase III study to evaluate the efficacy and safety of HER2/neu peptide GLSI-100 (GP2 + GM-CSF) in patients with residual disease or high-risk PCR after both neo-adjuvant and postoperative adjuvant anti-HER2 therapy. Cancer Research, 2022, 82, OT1-18-07-OT1-18-07.	0.4	0
5	Abstract P5-07-01: Proteogenomic analysis of differential chemotherapy responses in patient-derived xenografts of triple-negative breast cancer. Cancer Research, 2022, 82, P5-07-01-P5-07-01.	0.4	О
6	Abstract P4-01-01: Resistance to next generation tyrosine kinase inhibitors (TKIs) in HER2-positive breast cancer (BC): Role of <i>HER</i> and <i>PIK3CA</i> mutations and development of new treatment strategies and study models. Cancer Research, 2022, 82, P4-01-01-P4-01-01.	0.4	1
7	Abstract P2-09-09: Genetic assessment of hereditary breast and ovarian cancer in the Smith Clinic: A 10-year, single center experience. Cancer Research, 2022, 82, P2-09-09-P2-09-09.	0.4	О
8	Abstract CT232: A randomized, multicenter, placebo-controlled, phase III study to evaluate the efficacy and safety of HER2/neu peptide GLSI-100 (GP2 + GM-CSF) in patients with residual disease or high-risk PCR after both neo-adjuvant and postoperative adjuvant anti-HER2 therapy, Flamingo-01. Cancer Research, 2022, 82, CT232-CT232.	0.4	0
9	Effect of mevalonate pathway inhibitors on outcomes of patients (pts) with HER2-positive early breast cancer (BC) in the ALTTO trial Journal of Clinical Oncology, 2022, 40, 522-522.	0.8	O
10	A randomized, multicenter, placebo-controlled, phase III study to evaluate the efficacy and safety of HER2/neu peptide GLSI-100 (GP2 + GM-CSF) in patients with residual disease or high-risk PCR after both neo-adjuvant and postoperative adjuvant anti-HER2 therapy, Flamingo-01 Journal of Clinical Oncology, 2022, 40, TPS1110-TPS1110.	0.8	1
11	Abstract PD3-09:HER2 L755Smutation is acquired upon resistance to lapatinib and neratinib and confers cross-resistance to tucatinib and trastuzumab in HER2-positive breast cancer cell models., 2021,,.		2
12	Abstract PS5-29: Insights into the molecular underpinnings of the mevalonate pathway-YAP/TAZ-driven anti-HER2 therapy resistance in HER2+ breast cancer (BC). , 2021, , .		0
13	Activation of the IFN Signaling Pathway is Associated with Resistance to CDK4/6 Inhibitors and Immune Checkpoint Activation in ER-Positive Breast Cancer. Clinical Cancer Research, 2021, 27, 4870-4882.	3.2	49
14	Genetic assessment of hereditary breast and ovarian cancer in the Harris Health System: A five-year, single-center experience Journal of Clinical Oncology, 2021, 39, 10587-10587.	0.8	О
15	Change in management based on actionable mutations in metastatic breast cancer in an ethnically diverse cohort: Single institution experience Journal of Clinical Oncology, 2021, 39, e13067-e13067.	0.8	О
16	Neratinib plus trastuzumab is superior to pertuzumab plus trastuzumab in HER2-positive breast cancer xenograft models. Npj Breast Cancer, 2021, 7, 63.	2.3	4
17	A prospective, randomized, multicenter, double-blinded, placebo-controlled phase III trial of the HER2/neu peptide GP2 + GM-CSF versus bacteriostatic saline/WFI placebo as adjuvant therapy after any trastuzumab-based therapy in HER2-positive women with operable breast cancer Journal of Clinical Oncology, 2021, 39, TPS604-TPS604.	0.8	0
18	Abstract 2992: Proteogenomic characterization of triple-negative breast cancer patient-derived xenografts reveals molecular correlates of differential chemotherapy response and potential therapeutic targets to overcome resistance. , 2021, , .		0

#	Article	IF	CITATIONS
19	Management of hormone receptor–positive, human epidermal growth factor 2–negative metastatic breast cancer. Breast Cancer Research and Treatment, 2021, 190, 189-201.	1.1	10
20	HER2-Enriched Subtype and ERBB2 Expression in HER2-Positive Breast Cancer Treated with Dual HER2 Blockade. Journal of the National Cancer Institute, 2020, 112, 46-54.	3.0	97
21	Association Between 21-Gene Assay Recurrence Score and Locoregional Recurrence Rates in Patients With Node-Positive Breast Cancer. JAMA Oncology, 2020, 6, 505.	3.4	51
22	Towards personalized treatment for early stage HER2-positive breast cancer. Nature Reviews Clinical Oncology, 2020, 17, 233-250.	12.5	166
23	TBCRC023: A Randomized Phase II Neoadjuvant Trial of Lapatinib Plus Trastuzumab Without Chemotherapy for 12 versus 24 Weeks in Patients with HER2-Positive Breast Cancer. Clinical Cancer Research, 2020, 26, 821-827.	3.2	40
24	HER2-enriched subtype and pathological complete response in HER2-positive breast cancer: A systematic review and meta-analysis. Cancer Treatment Reviews, 2020, 84, 101965.	3.4	92
25	A multiparameter classifier to predict response to lapatinib plus trastuzumab (LT) without chemotherapy in HER2+ breast cancer (BC) Journal of Clinical Oncology, 2020, 38, 1011-1011.	0.8	4
26	DE-ESCALATING TREATMENT FOR HER2-POSITIVE EARLY BREAST CANCER. Transactions of the American Clinical and Climatological Association, 2020, 131, 119-126.	0.9	0
27	A CTC-Cluster-Specific Signature Derived from OMICS Analysis of Patient-Derived Xenograft Tumors Predicts Outcomes in Basal-Like Breast Cancer. Journal of Clinical Medicine, 2019, 8, 1772.	1.0	36
28	Targeting the Mevalonate Pathway to Overcome Acquired Anti-HER2 Treatment Resistance in Breast Cancer. Molecular Cancer Research, 2019, 17, 2318-2330.	1.5	41
29	Randomized controlled trial of high-dose versus standard-dose vitamin D3 for prevention of aromatase inhibitor-induced arthralgia. Breast Cancer Research and Treatment, 2019, 177, 427-435.	1.1	11
30	Analytical validation of a standardised scoring protocol for Ki67 immunohistochemistry on breast cancer excision whole sections: an international multicentre collaboration. Histopathology, 2019, 75, 225-235.	1.6	74
31	Circulating tumor cell investigation in breast cancer patient-derived xenograft models by automated immunofluorescence staining, image acquisition, and single cell retrieval and analysis. BMC Cancer, 2019, 19, 220.	1.1	19
32	Randomized Phase II Study Evaluating Palbociclib in Addition to Letrozole as Neoadjuvant Therapy in Estrogen Receptor–Positive Early Breast Cancer: PALLET Trial. Journal of Clinical Oncology, 2019, 37, 178-189.	0.8	136
33	Germline Genetic Variants in GATA3 and Breast Cancer Treatment Outcomes in SWOG S8897 Trial and the Pathways Study. Clinical Breast Cancer, 2019, 19, 225-235.e2.	1.1	4
34	FOXA1 upregulation promotes enhancer and transcriptional reprogramming in endocrine-resistant breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26823-26834.	3.3	103
35	The oral selective oestrogen receptor degrader (SERD) AZD9496 is comparable to fulvestrant in antagonising ER and circumventing endocrine resistance. British Journal of Cancer, 2019, 120, 331-339.	2.9	48
36	Molecular Mechanisms of Endocrine Resistance. Cancer Drug Discovery and Development, 2019, , 265-307.	0.2	5

3

#	Article	IF	Citations
37	Biomarker analysis of PALLET: A neoadjuvant trial of letrozole (L) ± palbociclib (P) Journal of Clinical Oncology, 2019, 37, 570-570.	0.8	9
38	GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer. Breast Cancer Research and Treatment, 2018, 170, 279-292.	1.1	22
39	Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer. Nature Medicine, 2018, 24, 505-511.	15.2	47
40	Trastuzumab-Resistant HER2+ Breast Cancer Cells Retain Sensitivity to Poly (ADP-Ribose) Polymerase (PARP) Inhibition. Molecular Cancer Therapeutics, 2018, 17, 921-930.	1.9	11
41	Low PTEN levels and PIK3CA mutations predict resistance to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2 over-expressing breast cancer. Breast Cancer Research and Treatment, 2018, 167, 731-740.	1.1	71
42	Vitamin D Levels, Vitamin D Receptor Polymorphisms, and Inflammatory Cytokines in Aromatase Inhibitor-Induced Arthralgias: An Analysis of CCTG MA.27. Clinical Breast Cancer, 2018, 18, 78-87.	1.1	13
43	First-Line Trastuzumab Plus an Aromatase Inhibitor, With or Without Pertuzumab, in Human Epidermal Growth Factor Receptor 2–Positive and Hormone Receptor–Positive Metastatic or Locally Advanced Breast Cancer (PERTAIN): A Randomized, Open-Label Phase II Trial. Journal of Clinical Oncology, 2018, 36, 2826-2835.	0.8	152
44	Cyclin E1 and Rb modulation as common events at time of resistance to palbociclib in hormone receptor-positive breast cancer. Npj Breast Cancer, 2018, 4, 38.	2.3	78
45	PAM50 HER2-enriched/ERBB2-high (HER2-E/ERBB2H) biomarker to predict response and survival following lapatinib (L) alone or in combination with trastuzumab (T) in HER2+ T-refractory metastatic breast cancer (BC): A correlative analysis of the EGF104900 phase III trial Journal of Clinical Oncology, 2018, 36, 1025-1025.	0.8	3
46	HER2-enriched subtype and ERBB2 mRNA as predictors of pathological complete response following trastuzumab and lapatinib without chemotherapy in early-stage HER2-positive breast cancer: A combined analysis of TBCRC006/023 and PAMELA trials Journal of Clinical Oncology, 2018, 36, 509-509.	0.8	10
47	Effect of a Scalp Cooling Device on Alopecia in Women Undergoing Chemotherapy for Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 317, 596.	3.8	163
48	HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-targeted Therapy in HER2+ Breast Cancer. Clinical Cancer Research, 2017, 23, 5123-5134.	3.2	85
49	De-escalation of treatment in HER2-positive breast cancer: Determinants of response and mechanisms of resistance. Breast, 2017, 34, S19-S26.	0.9	46
50	Scalp Cooling Alopecia Prevention trial (SCALP) for patients with early stage breast cancer Journal of Clinical Oncology, 2017, 35, 10088-10088.	0.8	2
51	Analysis of phosphatases in ER-negative breast cancers identifies DUSP4 as a critical regulator of growth and invasion. Breast Cancer Research and Treatment, 2016, 158, 441-454.	1.1	26
52	Phosphatase PTP4A3 Promotes Triple-Negative Breast Cancer Growth and Predicts Poor Patient Survival. Cancer Research, 2016, 76, 1942-1953.	0.4	77
53	FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6600-E6609.	3.3	119
54	Analytical validation of a standardized scoring protocol for Ki67: phase 3 of an international multicenter collaboration. Npj Breast Cancer, 2016, 2, 16014.	2.3	109

#	Article	IF	CITATIONS
55	Blockade of AP-1 Potentiates Endocrine Therapy and Overcomes Resistance. Molecular Cancer Research, 2016, 14, 470-481.	1.5	39
56	Evaluation of tumor immune infiltrate as a determinant of response to neo-adjuvant lapatinib and trastuzumab (LT) in HER2-positive (+) breast cancer (BC) Journal of Clinical Oncology, 2016, 34, 608-608.	0.8	1
57	Scalp cooling alopecia prevention trial (SCALP) for patients with early stage breast cancer Journal of Clinical Oncology, 2016, 34, TPS10144-TPS10144.	0.8	0
58	Vitamin D and aromatase inhibitor-induced arthralgia: Analysis of Canadian cancer trial group MA.27 data Journal of Clinical Oncology, 2016, 34, 10020-10020.	0.8	0
59	A Neoadjuvant, Randomized, Open-Label Phase II Trial of Afatinib Versus Trastuzumab Versus Lapatinib in Patients With Locally Advanced HER2-Positive Breast Cancer. Clinical Breast Cancer, 2015, 15, 101-109.	1.1	40
60	Upregulation of ER Signaling as an Adaptive Mechanism of Cell Survival in HER2-Positive Breast Tumors Treated with Anti-HER2 Therapy. Clinical Cancer Research, 2015, 21, 3995-4003.	3.2	82
61	The Osteogenic Niche Promotes Early-Stage Bone Colonization of Disseminated Breast Cancer Cells. Cancer Cell, 2015, 27, 193-210.	7.7	308
62	Targeting HER2 for the Treatment of Breast Cancer. Annual Review of Medicine, 2015, 66, 111-128.	5.0	213
63	Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. Breast Cancer Research, 2015, 17, 3.	2.2	48
64	Tailoring therapiesâ€"improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Annals of Oncology, 2015, 26, 1533-1546.	0.6	1,449
65	An international study to increase concordance in Ki67 scoring. Modern Pathology, 2015, 28, 778-786.	2.9	195
66	The changing role of ER in endocrine resistance. Breast, 2015, 24, S60-S66.	0.9	97
67	Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-Negative Breast Cancer. Clinical Cancer Research, 2015, 21, 1688-1698.	3.2	990
68	Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase. Breast Cancer Research, 2014, 16, 430.	2.2	61
69	The Oncogenic STP Axis Promotes Triple-Negative Breast Cancer via Degradation of the REST Tumor Suppressor. Cell Reports, 2014, 9, 1318-1332.	2.9	24
70	Aromatase Inhibitor Adverse Effects: Are We Sweeping Them Under the Rug?. Journal of Clinical Oncology, 2014, 32, 3779-3779.	0.8	8
71	Therapeutic potential of the dual EGFR/HER2Âinhibitor AZD8931 in circumventing endocrine resistance. Breast Cancer Research and Treatment, 2014, 144, 263-272.	1.1	49
72	An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Research, 2014, 24, 809-819.	5.7	155

#	Article	IF	Citations
73	Scalp cooling alopecia prevention trial (SCALP) Journal of Clinical Oncology, 2014, 32, TPS9660-TPS9660.	0.8	0
74	Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Annals of Oncology, 2013, 24, 2206-2223.	0.6	2,805
75	Biology and therapeutic potential of PI3K signaling in ER+/HER2-negative breast cancer. Breast, 2013, 22, S12-S18.	0.9	77
76	Multicenter Phase II Study of Neoadjuvant Lapatinib and Trastuzumab With Hormonal Therapy and Without Chemotherapy in Patients With Human Epidermal Growth Factor Receptor 2–Overexpressing Breast Cancer: TBCRC 006. Journal of Clinical Oncology, 2013, 31, 1726-1731.	0.8	238
77	Upregulation of mucin4 in ER-positive/HER2-overexpressing breast cancer xenografts with acquired resistance to endocrine and HER2-targeted therapies. Breast Cancer Research and Treatment, 2012, 134, 583-593.	1.1	31
78	A neoadjuvant, randomized, open-label phase II trial of afatinib (A) versus trastuzumab (T) versus lapatinib (L) in patients (pts) with locally advanced HER2-positive breast cancer (BC) Journal of Clinical Oncology, 2012, 30, 606-606.	0.8	8
79	Activation of Multiple Proto-oncogenic Tyrosine Kinases in Breast Cancer via Loss of the PTPN12 Phosphatase. Cell, 2011, 144, 703-718.	13.5	246
80	Different mechanisms for resistance to trastuzumab versus lapatinib in HER2- positive breast cancers role of estrogen receptor and HER2 reactivation. Breast Cancer Research, 2011, 13, R121.	2.2	219
81	Biological mechanisms and clinical implications of endocrine resistance in breast cancer. Breast, 2011, 20, S42-S49.	0.9	82
82	Mechanisms of Endocrine Resistance in Breast Cancer. Annual Review of Medicine, 2011, 62, 233-247.	5.0	963
83	Loss of Phosphatase and Tensin Homolog or Phosphoinositol-3 Kinase Activation and Response to Trastuzumab or Lapatinib in Human Epidermal Growth Factor Receptor 2–Overexpressing Locally Advanced Breast Cancers. Journal of Clinical Oncology, 2011, 29, 166-173.	0.8	235
84	Gefitinib or Placebo in Combination with Tamoxifen in Patients with Hormone Receptor–Positive Metastatic Breast Cancer: A Randomized Phase II Study. Clinical Cancer Research, 2011, 17, 1147-1159.	3.2	158
85	Optimizing Chemotherapy-Free Survival for the ER/HER2-Positive Metastatic Breast Cancer Patient. Clinical Cancer Research, 2011, 17, 5559-5561.	3.2	33
86	Reduced Dose and Intermittent Treatment with Lapatinib and Trastuzumab for Potent Blockade of the HER Pathway in HER2/neu-Overexpressing Breast Tumor Xenografts. Clinical Cancer Research, 2011, 17, 1351-1361.	3.2	76
87	Low SAFB levels are associated with worse outcome in breast cancer patients. Breast Cancer Research and Treatment, 2010, 121, 503-509.	1.1	31
88	Nuclear IRS-1 predicts tamoxifen response in patients with early breast cancer. Breast Cancer Research and Treatment, 2010, 123, 651-660.	1.1	21
89	Manganese superoxide dismutase polymorphism, treatment-related toxicity and disease-free survival in SWOG 8897 clinical trial for breast cancer. Breast Cancer Research and Treatment, 2010, 124, 433-439.	1.1	26
90	Epidermal growth factor receptor expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer, 2010, 116, 1234-1242.	2.0	181

#	Article	IF	CITATIONS
91	American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer. Journal of Clinical Oncology, 2010, 28, 2784-2795.	0.8	2,667
92	Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncology, The, 2010, 11, 55-65.	5.1	1,252
93	Gene Polymorphisms in Cyclophosphamide Metabolism Pathway, Treatment-Related Toxicity, and Disease-Free Survival in SWOG 8897 Clinical Trial for Breast Cancer. Clinical Cancer Research, 2010, 16, 6169-6176.	3.2	50
94	Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Research, 2010, 12, R40.	2.2	211
95	American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer. Archives of Pathology and Laboratory Medicine, 2010, 134, 907-922.	1.2	697
96	American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer (Unabridged Version). Archives of Pathology and Laboratory Medicine, 2010, 134, e48-e72.	1.2	855
97	Myeloperoxidase Genotypes and Enhanced Efficacy of Chemotherapy for Early-Stage Breast Cancer in SWOG-8897. Journal of Clinical Oncology, 2009, 27, 4973-4979.	0.8	24
98	Nitric Oxide Synthase Variants and Disease-Free Survival among Treated and Untreated Breast Cancer Patients in a Southwest Oncology Group Clinical Trial. Clinical Cancer Research, 2009, 15, 5258-5266.	3.2	46
99	Molecular profiles of progesterone receptor loss in human breast tumors. Breast Cancer Research and Treatment, 2009, 114, 287-299.	1.1	94
100	Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet, The, 2009, 374, 2055-2063.	6.3	237
101	Gene expression patterns in formalin-fixed, paraffin-embedded core biopsies predict docetaxel chemosensitivity in breast cancer patients. Breast Cancer Research and Treatment, 2008, 108, 233-240.	1.1	123
102	Crosstalk between the Estrogen Receptor and the HER Tyrosine Kinase Receptor Family: Molecular Mechanism and Clinical Implications for Endocrine Therapy Resistance. Endocrine Reviews, 2008, 29, 217-233.	8.9	470
103	Intrinsic Resistance of Tumorigenic Breast Cancer Cells to Chemotherapy. Journal of the National Cancer Institute, 2008, 100, 672-679.	3.0	1,632
104	Tamoxifen Resistance in Breast Tumors Is Driven by Growth Factor Receptor Signaling with Repression of Classic Estrogen Receptor Genomic Function. Cancer Research, 2008, 68, 826-833.	0.4	415
105	Development of Resistance to Targeted Therapies Transforms the Clinically Associated Molecular Profile Subtype of Breast Tumor Xenografts. Cancer Research, 2008, 68, 7493-7501.	0.4	120
106	Treatment of Human Epidermal Growth Factor Receptor 2-Overexpressing Breast Cancer Xenografts With Multiagent HER-Targeted Therapy. Journal of the National Cancer Institute, 2007, 99, 694-705.	3.0	176
107	Gene expression patterns for doxorubicin (Adriamycin) and cyclophosphamide (Cytoxan) (AC) response and resistance. Breast Cancer Research and Treatment, 2006, 95, 229-233.	1.1	88
108	Breast tumors that overexpress nuclear metastasis-associated 1 (MTA1) protein have high recurrence risks but enhanced responses to systemic therapies. Breast Cancer Research and Treatment, 2006, 95, 7-12.	1.1	49

#	Article	IF	Citations
109	The growth hormone receptor antagonist pegvisomant blocks both mammary gland development and MCF-7 breast cancer xenograft growth. Breast Cancer Research and Treatment, 2006, 98, 315-327.	1.1	88
110	Disruption of estrogen receptor DNA-binding domain and related intramolecular communication restores tamoxifen sensitivity in resistant breast cancer. Cancer Cell, 2006, 10, 487-499.	7.7	68
111	Scaffold Attachment Factor SAFB1 Suppresses Estrogen Receptor α-Mediated Transcription in Part via Interaction with Nuclear Receptor Corepressor. Molecular Endocrinology, 2006, 20, 311-320.	3.7	49
112	Mechanisms of Tumor Regression and Resistance to Estrogen Deprivation and Fulvestrant in a Model of Estrogen Receptor–Positive, HER-2/neu-Positive Breast Cancer. Cancer Research, 2006, 66, 8266-8273.	0.4	147
113	The HOXB13:IL17BR Expression Index Is a Prognostic Factor in Early-Stage Breast Cancer. Journal of Clinical Oncology, 2006, 24, 4611-4619.	0.8	232
114	Endocrine responsiveness: Understanding how progesterone receptor can be used to select endocrine therapy. Breast, 2005, 14, 458-465.	0.9	91
115	Fulvestrant versus anastrozole for the treatment of advanced breast carcinoma. Cancer, 2005, 104, 236-239.	2.0	154
116	Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance: implicated role of growth factor signaling and estrogen receptor coregulators. Cancer Chemotherapy and Pharmacology, 2005, 56, 10-20.	1.1	170
117	Clinical response to neoadjuvant docetaxel predicts improved outcome in patients with large locally advanced breast cancers. Breast Cancer Research and Treatment, 2005, 94, 279-284.	1.1	30
118	Estrogen Receptor–Positive, Progesterone Receptor–Negative Breast Cancer: Association With Growth Factor Receptor Expression and Tamoxifen Resistance. Journal of the National Cancer Institute, 2005, 97, 1254-1261.	3.0	423
119	Randomized, Controlled Trial of Cyclophosphamide, Methotrexate, and Fluorouracil Versus Cyclophosphamide, Doxorubicin, and Fluorouracil With and Without Tamoxifen for High-Risk, Node-Negative Breast Cancer: Treatment Results of Intergroup Protocol INT-0102. Journal of Clinical Oncology, 2005, 23, 8313-8321.	0.8	113
120	Patterns of Resistance and Incomplete Response to Docetaxel by Gene Expression Profiling in Breast Cancer Patients. Journal of Clinical Oncology, 2005, 23, 1169-1177.	0.8	189
121	Insights Into the Role of Progesterone Receptors in Breast Cancer. Journal of Clinical Oncology, 2005, 23, 931-932.	0.8	30
122	Neoadjuvant Trastuzumab Induces Apoptosis in Primary Breast Cancers. Journal of Clinical Oncology, 2005, 23, 2460-2468.	0.8	235
123	Molecular Changes in Tamoxifen-Resistant Breast Cancer: Relationship Between Estrogen Receptor, HER-2, and p38 Mitogen-Activated Protein Kinase. Journal of Clinical Oncology, 2005, 23, 2469-2476.	0.8	436
124	Estrogen-Receptor Biology: Continuing Progress and Therapeutic Implications. Journal of Clinical Oncology, 2005, 23, 1616-1622.	0.8	301
125	Aromatase inhibitors: Future directions. Journal of Steroid Biochemistry and Molecular Biology, 2005, 95, 183-187.	1.2	23
126	Biology of Progesterone Receptor Loss in Breast Cancer and Its Implications for Endocrine Therapy. Journal of Clinical Oncology, 2005, 23, 7721-7735.	0.8	430

#	Article	IF	CITATIONS
127	Endocrinology and hormone therapy in breast cancer: New insight into estrogen receptor-α function and its implication for endocrine therapy resistance in breast cancer. Breast Cancer Research, 2005, 7, 205-11.	2.2	62
128	Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clinical Cancer Research, 2005, 11, 865s-70s.	3.2	277
129	Low Levels of Estrogen Receptor \hat{I}^2 Protein Predict Resistance to Tamoxifen Therapy in Breast Cancer. Clinical Cancer Research, 2004, 10, 7490-7499.	3.2	178
130	HER-2 Amplification, HER-1 Expression, and Tamoxifen Response in Estrogen Receptor-Positive Metastatic Breast Cancer. Clinical Cancer Research, 2004, 10, 5670-5676.	3.2	223
131	Comparison of Fulvestrant Versus Tamoxifen for the Treatment of Advanced Breast Cancer in Postmenopausal Women Previously Untreated With Endocrine Therapy: A Multinational, Double-Blind, Randomized Trial. Journal of Clinical Oncology, 2004, 22, 1605-1613.	0.8	392
132	Mechanisms of Tamoxifen Resistance: Increased Estrogen Receptor-HER2/neu Cross-Talk in ER/HER2-Positive Breast Cancer. Journal of the National Cancer Institute, 2004, 96, 926-935.	3.0	1,048
133	Cross-Talk between Estrogen Receptor and Growth Factor Pathways as a Molecular Target for Overcoming Endocrine Resistance: Fig. 1 Clinical Cancer Research, 2004, 10, 331s-336s.	3.2	397
134	Role of the Estrogen Receptor Coactivator AIB1 (SRC-3) and HER-2/neu in Tamoxifen Resistance in Breast Cancer. Journal of the National Cancer Institute, 2003, 95, 353-361.	3.0	717
135	Growth factor receptor cross-talk with estrogen receptor as a mechanism for tamoxifen resistance in breast cancer. Breast, 2003, 12, 362-367.	0.9	129
136	Fulvestrant versus anastrozole for the treatment of advanced breast carcinoma in postmenopausal women. Cancer, 2003, 98, 229-238.	2.0	305
137	Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet, The, 2003, 362, 362-369.	6.3	804
138	Progesterone Receptor Status Significantly Improves Outcome Prediction Over Estrogen Receptor Status Alone for Adjuvant Endocrine Therapy in Two Large Breast Cancer Databases. Journal of Clinical Oncology, 2003, 21, 1973-1979.	0.8	636
139	Dominant-Negative Nuclear Receptor Corepressor Relieves Transcriptional Inhibition of Retinoic Acid Receptor but Does Not Alter the Agonist/Antagonist Activities of the Tamoxifen-Bound Estrogen Receptor. Molecular Endocrinology, 2003, 17, 1543-1554.	3.7	14
140	Estrogen receptor beta protein in human breast cancer: correlation with clinical tumor parameters. Cancer Research, 2003, 63, 2434-9.	0.4	113
141	Enhanced Gene Expression in Breast Cancer Cells in Vitro and Tumors in Vivo. Molecular Therapy, 2002, 6, 783-792.	3.7	43
142	Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene, 2002, 21, 7680-7689.	2.6	113
143	Forkhead Homologue in Rhabdomyosarcoma Functions as a Bifunctional Nuclear Receptor-interacting Protein with Both Coactivator and Corepressor Functions. Journal of Biological Chemistry, 2001, 276, 27907-27912.	1.6	144
144	Selective Estrogen Receptor Modulators: Structure, Function, and Clinical Use. Journal of Clinical Oncology, 2000, 18, 3172-3186.	0.8	317

#	Article	IF	Citations
145	Estrogen receptor (ER) and progesterone receptor (PgR), by ligand-binding assay compared with ER, PgR and pS2, by immuno-histochemistry in predicting response to tamoxifen in metastatic breast cancer: A Southwest Oncology Group study. , 2000, 89, 111-117.		271
146	ICI 182,780 (Faslodex?). Cancer, 2000, 89, 817-825.	2.0	365
147	Tamoxifen-Bound Estrogen Receptor (ER) Strongly Interacts with the Nuclear Matrix Protein HET/SAF-B, a Novel Inhibitor of ER-Mediated Transactivation. Molecular Endocrinology, 2000, 14, 369-381.	3.7	89
148	Oxidative Stress and AP-1 Activity in Tamoxifen-Resistant Breast Tumors In Vivo. Journal of the National Cancer Institute, 2000, 92, 1926-1934.	3.0	170
149	ICI 182,780 (Faslodexâ,,¢). Cancer, 2000, 89, 817-825.	2.0	9
150	Estrogen Receptor Status by Immunohistochemistry Is Superior to the Ligand-Binding Assay for Predicting Response to Adjuvant Endocrine Therapy in Breast Cancer. Journal of Clinical Oncology, 1999, 17, 1474-1474.	0.8	1,880
151	Significance of Axillary Lymph Node Metastasis in Primary Breast Cancer. Journal of Clinical Oncology, 1999, 17, 2334-2334.	0.8	258
152	Enhancement of Insulin-Like Growth Factor Signaling in Human Breast Cancer: Estrogen Regulation of Insulin Receptor Substrate-1 Expression in Vitro and in Vivo. Molecular Endocrinology, 1999, 13, 787-796.	3.7	292
153	Tumor Characteristics and Clinical Outcome of Tubular and Mucinous Breast Carcinomas. Journal of Clinical Oncology, 1999, 17, 1442-1442.	0.8	259
154	Steroid hormone receptors in breast cancer management. Breast Cancer Research and Treatment, 1998, 51, 227-238.	1.1	401
155	Time-dependence of hazard ratios for prognostic factors in primary breast cancer. Breast Cancer Research and Treatment, 1998, 52, 227-237.	1.1	213
156	bcl-2 and apoptosis in lymph node positive breast carcinoma. Cancer, 1998, 82, 1296-1302.	2.0	119
157	Tamoxifen in the Treatment of Breast Cancer. New England Journal of Medicine, 1998, 339, 1609-1618.	13.9	1,156
158	BRCA1 in Clinical Breast Cancer. Breast Disease, 1998, 10, 77-88.	0.4	3
159	bcl-2 and apoptosis in lymph node positive breast carcinoma. , 1998, 82, 1296.		3
160	Prognostic significance of PAI-1 and uPA in cytosolic extracts obtained from node-positive breast cancer patients. Breast Cancer Research and Treatment, 1997, 43, 153-163.	1.1	48
161	Prognostic factors: Rationale and methods of analysis and integration. Breast Cancer Research and Treatment, 1994, 32, 105-112.	1.1	38
162	The importance of tamoxifen metabolism in tamoxifen-stimulated breast tumor growth. Cancer Chemotherapy and Pharmacology, 1994, 34, 89-95.	1.1	126

#	Article	IF	CITATIONS
163	Measurement of steroid hormone receptors in breast cancer patients on tamoxifen. Breast Cancer Research and Treatment, 1993, 26, 237-246.	1.1	180
164	Proportional hazards and recursive partitioning and amalgamation analyses of the southwest oncology group node-positive adjuvant CMFVP breast cancer data base: a pilot study. Breast Cancer Research and Treatment, 1992, 22, 273-284.	1.1	27
165	Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Research and Treatment, 1992, 24, 85-95.	1.1	670
166	Growth factors as mediators of estrogen/ antiestrogen action in human breast cancer cells. Cancer Treatment and Research, 1991, 53, 289-304.	0.2	29
167	Insulin-Like Growth Factor-Il (IGF-II): A Potential Autocrine/Paracrine Growth Factor for Human Breast Cancer Acting via the IGF-I Receptor. Molecular Endocrinology, 1989, 3, 1701-1709.	3.7	240
168	Megestrol acetate in breast cancer â€" A panel discussion. Breast Cancer Research and Treatment, 1989, 14, 33-38.	1.1	4
169	Adjuvant therapy in node-negative breast cancer. Breast Cancer Research and Treatment, 1989, 13, 97-115.	1.1	22
170	Pain control in breast cancer. Breast Cancer Research and Treatment, 1989, 13, 5-15.	1.1	3
171	Tumor and serum tamoxifen concentrations in the athymic nude mouse. Cancer Chemotherapy and Pharmacology, 1989, 23, 68-70.	1.1	15
172	Secreted growth factors from estrogen receptor-negative human breast cancer do not support growth of estrogen receptor-positive breast cancer in the nude mouse model. Breast Cancer Research and Treatment, 1988, 11, 211-219.	1.1	27
173	8 Steroid Receptors in Relation to Response. , 1988, 1, 84-99.		1
174	Human breast cancer in the athymic nude mouse: Cystostatic effects of long-term antiestrogen therapy. European Journal of Cancer & Clinical Oncology, 1987, 23, 1189-1196.	0.9	162
175	Biological differences among MCF-7 human breast cancer cell lines from different laboratories. Breast Cancer Research and Treatment, 1987, 9, 111-121.	1.1	229
176	Serum tamoxifen concentrations in the athymic nude mouse after three methods of administration. Cancer Chemotherapy and Pharmacology, 1987, 20, 316-8.	1.1	18
177	Endocrine therapy testing of human breast cancers in the soft agar clonogenic assay. Breast Cancer Research and Treatment, 1985, 6, 229-235.	1.1	18
178	An autopsy study of histologic progression in non-Hodgkin's lymphomas 192 cases from the national cancer institute. Cancer, 1983, 52, 393-398.	2.0	146
179	Adjuvant therapy for stage II, estrogen receptor negative breast cancer. Breast Cancer Research and Treatment, 1981, 1, 131-134.	1.1	0
180	Correlation of primary breast cancer histopathology and estrogen receptor content. Breast Cancer Research and Treatment, 1981, 1, 37-41.	1.1	96

#	Article	IF	CITATIONS
181	The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer, 1980, 46, 2884-2888.	2.0	629
182	Hormone receptors in primary and advanced breast cancer. Clinics in Endocrinology and Metabolism, 1980, 9, 361-368.	1.8	32
183	The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer, 1980, 46, 2884-2888.	2.0	427
184	In Vitro Model Systems for the Study of Hormone-Dependent Human Breast Cancer. New England Journal of Medicine, 1977, 296, 154-159.	13.9	75