Ying Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1157099/publications.pdf

Version: 2024-02-01

394421 276875 2,380 41 19 41 citations h-index g-index papers 44 44 44 3282 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An automated framework for high-throughput predictions of NMR chemical shifts within liquid solutions. Nature Computational Science, 2022, 2, 112-122.	8.0	4
2	Understanding the Solvation-Dependent Properties of Cyclic Ether Multivalent Electrolytes Using High-Field NMR and Quantum Chemistry. Jacs Au, 2022, 2, 917-932.	7.9	5
3	A sobering examination of the feasibility of aqueous aluminum batteries. Energy and Environmental Science, 2022, 15, 2460-2469.	30.8	27
4	Factors Influencing Preferential Anion Interactions during Solvation of Multivalent Cations in Ethereal Solvents. Journal of Physical Chemistry C, 2021, 125, 6005-6012.	3.1	17
5	Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries. Science, 2021, 372, 836-840.	12.6	135
6	Role of a Multivalent Ion–Solvent Interaction on Restricted Mg ²⁺ Diffusion in Dimethoxyethane Electrolytes. Journal of Physical Chemistry B, 2021, 125, 12574-12583.	2.6	7
7	Pulsed Field Gradient Nuclear Magnetic Resonance and Diffusion Analysis in Battery Research. Chemistry of Materials, 2021, 33, 8562-8590.	6.7	20
8	Reversible Electrochemical Interface of Mg Metal and Conventional Electrolyte Enabled by Intermediate Adsorption. ACS Energy Letters, 2020, 5, 200-206.	17.4	44
9	Role of Solvent Rearrangement on Mg ²⁺ Solvation Structures in Dimethoxyethane Solutions using Multimodal NMR Analysis. Journal of Physical Chemistry Letters, 2020, 11, 6443-6449.	4.6	27
10	Quantitative Cu Counting Methodologies for Cu/SSZ-13 Selective Catalytic Reduction Catalysts by Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 28061-28073.	3.1	20
11	Origin of Unusual Acidity and Li ⁺ Diffusivity in a Series of Water-in-Salt Electrolytes. Journal of Physical Chemistry B, 2020, 124, 5284-5291.	2.6	26
12	Probing Active-Site Relocation in Cu/SSZ-13 SCR Catalysts during Hydrothermal Aging by In Situ EPR Spectroscopy, Kinetics Studies, and DFT Calculations. ACS Catalysis, 2020, 10, 9410-9419.	11,2	64
13	Photo-production of reactive oxygen species and degradation of dissolved organic matter by hematite nanoplates functionalized by adsorbed oxalate. Environmental Science: Nano, 2020, 7, 2278-2292.	4.3	21
14	A lithium-sulfur battery with a solution-mediated pathway operating under lean electrolyte conditions. Nano Energy, 2020, 76, 105041.	16.0	25
15	Probing Conformational Evolution and Associated Dynamics of Mg(N(SO ₂ CF ₃) ₂) ₂ A·Dimethoxyethane Adduct Using Solid-State ¹⁹ F and ¹ H NMR. Journal of Physical Chemistry C, 2020, 124, 4999-5008.	3.1	13
16	Relating Geometric Nanoconfinement and Local Molecular Environment to Diffusion in Ionic Polymer Membranes. Macromolecules, 2020, 53, 3296-3305.	4.8	16
17	Evolution of Radicals from the Photolysis of High Ionic Strength Alkaline Nitrite Solutions. Journal of Physical Chemistry A, 2020, 124, 3019-3025.	2.5	4
18	The role of surface hydroxyls on the radiolysis of gibbsite and boehmite nanoplatelets. Journal of Hazardous Materials, 2020, 398, 122853.	12.4	18

#	Article	IF	Citations
19	Facet-Specific Photocatalytic Degradation of Organics by Heterogeneous Fenton Chemistry on Hematite Nanoparticles. Environmental Science & Environment	10.0	101
20	Mechanism by which Tungsten Oxide Promotes the Activity of Supported V ₂ O ₅ /TiO ₂ Catalysts for NO _{<i>X</i>} Abatement: Structural Effects Revealed by ⁵¹ V MAS NMR Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 12609-12616.	13.8	96
21	Cr(III) Adsorption by Cluster Formation on Boehmite Nanoplates in Highly Alkaline Solution. Environmental Science & Environmen	10.0	42
22	A closed cycle for esterifying aromatic hydrocarbons with CO2 and alcohol. Nature Chemistry, 2019, 11, 940-947.	13.6	30
23	Adsorption and Thermal Decomposition of Electrolytes on Nanometer Magnesium Oxide: An in Situ 13C MAS NMR Study. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38689-38696.	8.0	19
24	A novel high-temperature MAS probe with optimized temperature gradient across sample rotor for in-situ monitoring of high-temperature high-pressure chemical reactions. Solid State Nuclear Magnetic Resonance, 2019, 102, 31-35.	2.3	6
25	A multi-functional interface derived from thiol-modified mesoporous carbon in lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13372-13381.	10.3	17
26	Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts. Nature Communications, 2019, 10, 1137.	12.8	99
27	Monitoring solvent dynamics and ion associations in the formation of cubic octamer polyanion in tetramethylammonium silicate solutions. Physical Chemistry Chemical Physics, 2019, 21, 4717-4720.	2.8	9
28	Water‣ubricated Intercalation in V ₂ O ₅ ·nH ₂ O for High apacity and Highâ€Rate Aqueous Rechargeable Zinc Batteries. Advanced Materials, 2018, 30, 1703725.	21.0	1,084
29	Toward high-resolution NMR spectroscopy of microscopic liquid samples. Physical Chemistry Chemical Physics, 2017, 19, 14256-14261.	2.8	6
30	High-resolution microstrip NMR detectors for subnanoliter samples. Physical Chemistry Chemical Physics, 2017, 19, 28163-28174.	2.8	12
31	Bottom-Up Fabrication of Nanostructured Bicontinuous and Hexagonal Ion-Conducting Polymer Membranes. Macromolecules, 2017, 50, 5392-5401.	4.8	12
32	Highly Conductive and Thermally Stable Ion Gels with Tunable Anisotropy and Modulus. Advanced Materials, 2016, 28, 2571-2578.	21.0	70
33	A New Interleukin-13 Amino-Coated Gadolinium Metallofullerene Nanoparticle for Targeted MRI Detection of Glioblastoma Tumor Cells. Journal of the American Chemical Society, 2015, 137, 7881-7888.	13.7	76
34	Diffusion of Drug Delivery Nanoparticles into Biogels Using Time-Resolved MicroMRI. Journal of Physical Chemistry Letters, 2014, 5, 3825-3830.	4.6	17
35	Gd ₃ N@C ₈₄ (OH) _{<i>x</i>} : A New Egg-Shaped Metallofullerene Magnetic Resonance Imaging Contrast Agent. Journal of the American Chemical Society, 2014, 136, 2630-2636.	13.7	67
36	Humidity-Modulated Phase Control and Nanoscopic Transport in Supramolecular Assemblies. Journal of Physical Chemistry B, 2014, 118, 3207-3217.	2.6	28

YING CHEN

#	Article	IF	CITATION
37	Hydroxyalkyl-Containing Imidazolium Homopolymers: Correlation of Structure with Conductivity. Macromolecules, 2013, 46, 3037-3045.	4.8	52
38	Solvent-assisted thermal annealing of disulfonated poly(arylene ether sulfone) random copolymers for low humidity polymer electrolyte membrane fuel cells. RSC Advances, 2012, 2, 1025-1032.	3.6	16
39	Crystallinity and Motional Dynamics Study of a Series of Poly(arylene ether sulfone) Segmented Copolymer Analogues. Journal of Physical Chemistry B, 2012, 116, 7970-7980.	2.6	1
40	Pair-Hopping Characteristic of Lithium Diffusive Motion in Li-Doped \hat{l}^2 -Phase Manganese Phthalocyanine. Journal of Physical Chemistry B, 2007, 111, 10064-10068.	2.6	3
41	The Quantum Solvation, Adiabatic versus Nonadiabatic, and Markovian versus Non-Markovian Nature of Electron-Transfer Rate Processes. Journal of Physical Chemistry A, 2007, 111, 9618-9626.	2.5	20