List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11570965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coordinating the Mechanisms of Action of Ferroptosis and the Photothermal Effect for Cancer Theranostics. Angewandte Chemie, 2022, 134, .	2.0	15
2	Coordinating the Mechanisms of Action of Ferroptosis and the Photothermal Effect for Cancer Theranostics. Angewandte Chemie - International Edition, 2022, 61, .	13.8	74
3	Imaging Beyond Seeing: Early Prognosis of Cancer Treatment. Small Methods, 2021, 5, e2001025.	8.6	14
4	Oxygenâ€Evolving Manganese Ferrite Nanovesicles for Hypoxiaâ€Responsive Drug Delivery and Enhanced Cancer Chemoimmunotherapy. Advanced Functional Materials, 2021, 31, 2008078.	14.9	65
5	Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Coâ€essembly with Camptothecin Prodrug. Angewandte Chemie - International Edition, 2021, 60, 21033-21039.	13.8	22
6	Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Coâ€assembly with Camptothecin Prodrug. Angewandte Chemie, 2021, 133, 21201-21207.	2.0	2
7	Improving the sensitivity of <i>T</i> ₁ contrast-enhanced MRI and sensitive diagnosing tumors with ultralow doses of MnO octahedrons. Theranostics, 2021, 11, 6966-6982.	10.0	16
8	Tale of Two Magnets: An Advanced Magnetic Targeting System. ACS Nano, 2020, 14, 7-11.	14.6	37
9	Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications. Theranostics, 2020, 10, 1296-1318.	10.0	127
10	Targeted scavenging of extracellular ROS relieves suppressive immunogenic cell death. Nature Communications, 2020, 11, 4951.	12.8	132
11	Reactive Oxygen Species Activatable Heterodimeric Prodrug as Tumor-Selective Nanotheranostics. ACS Nano, 2020, 14, 16875-16886.	14.6	45
12	Enhancing Chemotherapy of p53â€Mutated Cancer through Ubiquitinationâ€Dependent Proteasomal Degradation of Mutant p53 Proteins by Engineered ZnFeâ€4 Nanoparticles. Advanced Functional Materials, 2020, 30, 2001994.	14.9	18
13	Endogenous Labile Iron Pool-Mediated Free Radical Generation for Cancer Chemodynamic Therapy. Journal of the American Chemical Society, 2020, 142, 15320-15330.	13.7	170
14	Size-transformable antigen-presenting cell–mimicking nanovesicles potentiate effective cancer immunotherapy. Science Advances, 2020, 6, .	10.3	53
15	Early stratification of radiotherapy response by activatable inflammation magnetic resonance imaging. Nature Communications, 2020, 11, 3032.	12.8	62
16	Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Advanced Drug Delivery Reviews, 2020, 158, 73-90.	13.7	83
17	Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials, 2020, 244, 119979.	11.4	40
18	Targeting Neutrophils for Enhanced Cancer Theranostics. Advanced Materials, 2020, 32, e2002739.	21.0	52

#	Article	IF	CITATIONS
19	Endoplasmic Reticulum Targeting to Amplify Immunogenic Cell Death for Cancer Immunotherapy. Nano Letters, 2020, 20, 1928-1933.	9.1	235
20	Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials, 2020, 235, 119783.	11.4	61
21	Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nature Communications, 2020, 11, 4909.	12.8	199
22	Xâ€ray ontrolled Bilayer Permeability of Bionic Nanocapsules Stabilized by Nucleobase Pairing Interactions for Pulsatile Drug Delivery. Advanced Materials, 2019, 31, e1903443.	21.0	51
23	Tumor Microenvironment-Activated Ultrasensitive Nanoprobes for Specific Detection of Intratumoral Glutathione by Ratiometric Photoacoustic Imaging. ACS Applied Materials & Interfaces, 2019, 11, 27558-27567.	8.0	46
24	In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials, 2019, 218, 119365.	11.4	80
25	Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics, 2019, 9, 7200-7209.	10.0	96
26	Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chemical Society Reviews, 2019, 48, 5140-5176.	38.1	150
27	An Albumin-Binding <i>T</i> ₁ – <i>T</i> ₂ Dual-Modal MRI Contrast Agents for Improved Sensitivity and Accuracy in Tumor Imaging. Bioconjugate Chemistry, 2019, 30, 1821-1829.	3.6	32
28	Synthesis of Copper Peroxide Nanodots for H ₂ O ₂ Self-Supplying Chemodynamic Therapy. Journal of the American Chemical Society, 2019, 141, 9937-9945.	13.7	759
29	Core-shell metal-organic frameworks with fluorescence switch to trigger an enhanced photodynamic therapy. Theranostics, 2019, 9, 2791-2799.	10.0	53
30	Porphyrin Nanocageâ€Embedded Singleâ€Molecular Nanoparticles for Cancer Nanotheranostics. Angewandte Chemie, 2019, 131, 8891-8895.	2.0	7
31	Self-Assembled Responsive Bilayered Vesicles with Adjustable Oxidative Stress for Enhanced Cancer Imaging and Therapy. Journal of the American Chemical Society, 2019, 141, 8158-8170.	13.7	132
32	A Catalaseâ€Like Metalâ€Organic Framework Nanohybrid for O ₂ â€Evolving Synergistic Chemoradiotherapy. Angewandte Chemie, 2019, 131, 8844-8848.	2.0	33
33	Porphyrin Nanocageâ€Embedded Singleâ€Molecular Nanoparticles for Cancer Nanotheranostics. Angewandte Chemie - International Edition, 2019, 58, 8799-8803.	13.8	62
34	Ultrasmall Quantum Dots with Broad‣pectrum Metal Doping Ability for Trimodal Molecular Imaging. Advanced Functional Materials, 2019, 29, 1901671.	14.9	16
35	A Catalaseâ€Like Metalâ€Organic Framework Nanohybrid for O ₂ â€Evolving Synergistic Chemoradiotherapy. Angewandte Chemie - International Edition, 2019, 58, 8752-8756.	13.8	154
36	Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nature Communications, 2019, 10, 1241.	12.8	112

ZIJIAN ZHOU

#	Article	IF	CITATIONS
37	<i>In Situ</i> Dendritic Cell Vaccine for Effective Cancer Immunotherapy. ACS Nano, 2019, 13, 3083-3094.	14.6	164
38	A Logic-Gated Modular Nanovesicle Enables Programmable Drug Release for On-Demand Chemotherapy. Theranostics, 2019, 9, 1358-1368.	10.0	21
39	Gadolinium Metallofullereneâ€Based Activatable Contrast Agent for Tumor Signal Amplification and Monitoring of Drug Release. Small, 2019, 15, 1900691.	10.0	34
40	Structure–Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. Advanced Materials, 2019, 31, e1804567.	21.0	279
41	Biodegradable hollow manganese/cobalt oxide nanoparticles for tumor theranostics. Nanoscale, 2019, 11, 23021-23026.	5.6	35
42	Tumorâ€6pecific Drug Release and Reactive Oxygen Species Generation for Cancer Chemo/Chemodynamic Combination Therapy. Advanced Science, 2019, 6, 1801986.	11.2	221
43	A supramolecular hybrid material constructed from graphene oxide and a pillar[6]arene-based host–guest complex as an ultrasound and photoacoustic signal nanoamplifier. Materials Horizons, 2018, 5, 429-435.	12.2	59
44	Simultaneous Fentonâ€like Ion Delivery and Glutathione Depletion by MnO ₂ â€Based Nanoagent to Enhance Chemodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 4902-4906.	13.8	1,068
45	Simultaneous Fentonâ€like Ion Delivery and Glutathione Depletion by MnO ₂ â€Based Nanoagent to Enhance Chemodynamic Therapy. Angewandte Chemie, 2018, 130, 4996-5000.	2.0	195
46	Cancer Therapy: Emerging Strategies of Cancer Therapy Based on Ferroptosis (Adv. Mater. 12/2018). Advanced Materials, 2018, 30, 1870084.	21.0	6
47	Emerging Strategies of Cancer Therapy Based on Ferroptosis. Advanced Materials, 2018, 30, e1704007.	21.0	478
48	Artificial Molecular Machines in Nanotheranostics. ACS Nano, 2018, 12, 7-12.	14.6	73
49	Porous gold nanocluster-decorated manganese monoxide nanocomposites for microenvironment-activatable MR/photoacoustic/CT tumor imaging. Nanoscale, 2018, 10, 3631-3638.	5.6	54
50	Hypochlorous Acid Promoted Platinum Drug Chemotherapy by Myeloperoxidase-Encapsulated Therapeutic Metal Phenolic Nanoparticles. ACS Nano, 2018, 12, 455-463.	14.6	134
51	Cooperative Assembly of Magneto-Nanovesicles with Tunable Wall Thickness and Permeability for MRI-Guided Drug Delivery. Journal of the American Chemical Society, 2018, 140, 4666-4677.	13.7	138
52	Radiolabeled Angiogenesis-Targeting Croconaine Nanoparticles for Trimodality Imaging Guided Photothermal Therapy of Glioma. ACS Applied Nano Materials, 2018, 1, 1741-1749.	5.0	27
53	A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nature Communications, 2018, 9, 4335.	12.8	197
54	Fenton-Reaction-Acceleratable Magnetic Nanoparticles for Ferroptosis Therapy of Orthotopic Brain Tumors. ACS Nano, 2018, 12, 11355-11365.	14.6	449

#	Article	IF	CITATIONS
55	Synchronous Chemoradiation Nanovesicles by Xâ€Ray Triggered Cascade of Drug Release. Angewandte Chemie, 2018, 130, 8599-8603.	2.0	4
56	Dotted Core–Shell Nanoparticles for <i>T</i> ₁ â€Weighted MRI of Tumors. Advanced Materials, 2018, 30, e1803163.	21.0	96
57	Gadolinium Metallofullerene-Polypyrrole Nanoparticles for Activatable Dual-Modal Imaging-Guided Photothermal Therapy. ACS Applied Materials & Interfaces, 2018, 10, 28382-28389.	8.0	32
58	Glutathione-Responsive Self-Assembled Magnetic Gold Nanowreath for Enhanced Tumor Imaging and Imaging-Guided Photothermal Therapy. ACS Nano, 2018, 12, 8129-8137.	14.6	131
59	Synchronous Chemoradiation Nanovesicles by Xâ€Ray Triggered Cascade of Drug Release. Angewandte Chemie - International Edition, 2018, 57, 8463-8467.	13.8	59
60	Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angewandte Chemie, 2017, 129, 6592-6596.	2.0	63
61	Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 6492-6496.	13.8	328
62	Artificial local magnetic field inhomogeneity enhances T2 relaxivity. Nature Communications, 2017, 8, 15468.	12.8	114
63	Doubleâ€Layered Plasmonic–Magnetic Vesicles by Selfâ€Assembly of Janus Amphiphilic Gold–Iron(II,III) Oxide Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 8110-8114.	13.8	107
64	Double‣ayered Plasmonic–Magnetic Vesicles by Selfâ€Assembly of Janus Amphiphilic Gold–Iron(II,III) Oxide Nanoparticles. Angewandte Chemie, 2017, 129, 8222-8226.	2.0	25
65	<i>T</i> ₁ – <i>T</i> ₂ Dual-Modal Magnetic Resonance Imaging: From Molecular Basis to Contrast Agents. ACS Nano, 2017, 11, 5227-5232.	14.6	108
66	Yolk–Shell Nanostructure: An Ideal Architecture to Achieve Harmonious Integration of Magnetic–Plasmonic Hybrid Theranostic Platform. Advanced Materials, 2017, 29, 1606681.	21.0	106
67	Antitumor Activity of a Unique Polymer That Incorporates a Fluorescent Self-Assembled Metallacycle. Journal of the American Chemical Society, 2017, 139, 15940-15949.	13.7	203
68	Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for <i>T</i> ₁ -Weighted Magnetic Resonance Imaging and Chemotherapy. ACS Nano, 2017, 11, 10992-11004.	14.6	239
69	Core–Satellite Polydopamine–Gadoliniumâ€Metallofullerene Nanotheranostics for Multimodal Imaging Guided Combination Cancer Therapy. Advanced Materials, 2017, 29, 1701013.	21.0	185
70	Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nature Communications, 2017, 8, 1777.	12.8	146
71	Gadolinium hybrid iron oxide nanocomposites for dual T ₁ - and T ₂ -weighted MR imaging of cell labeling. Biomaterials Science, 2017, 5, 50-56.	5.4	18
72	Self-Assembly of Semiconducting-Plasmonic Gold Nanoparticles with Enhanced Optical Property for Photoacoustic Imaging and Photothermal Therapy. Theranostics, 2017, 7, 2177-2185.	10.0	79

#	Article	IF	CITATIONS
73	Water bridge coordination on the metal-rich facets of Gd ₂ O ₃ nanoplates confers high T ₁ relaxivity. Nanoscale, 2016, 8, 17887-17894.	5.6	31
74	Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chemical Society Reviews, 2016, 45, 6597-6626.	38.1	1,483
75	Magnetoâ€Plasmonic Janus Vesicles for Magnetic Fieldâ€Enhanced Photoacoustic and Magnetic Resonance Imaging of Tumors. Angewandte Chemie - International Edition, 2016, 55, 15297-15300.	13.8	102
76	Magnetoâ€Plasmonic Janus Vesicles for Magnetic Fieldâ€Enhanced Photoacoustic and Magnetic Resonance Imaging of Tumors. Angewandte Chemie, 2016, 128, 15523-15526.	2.0	12
77	Deep Photoacoustic/Luminescence/Magnetic Resonance Multimodal Imaging in Living Subjects Using Highâ€Efficiency Upconversion Nanocomposites. Advanced Materials, 2016, 28, 6411-6419.	21.0	142
78	Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T ₁ contrast ability. Nanoscale, 2016, 8, 3768-3774.	5.6	57
79	A Protein-Corona-Free <i>T</i> ₁ – <i>T</i> ₂ Dual-Modal Contrast Agent for Accurate Imaging of Lymphatic Tumor Metastasis. ACS Applied Materials & Interfaces, 2015, 7, 28286-28293.	8.0	18
80	Surface and Interfacial Engineering of Iron Oxide Nanoplates for Highly Efficient Magnetic Resonance Angiography. ACS Nano, 2015, 9, 3012-3022.	14.6	124
81	A multiple gadolinium complex decorated fullerene as a highly sensitive T ₁ contrast agent. Chemical Communications, 2015, 51, 4390-4393.	4.1	59
82	Anisotropic Shaped Iron Oxide Nanostructures: Controlled Synthesis and Proton Relaxation Shortening Effects. Chemistry of Materials, 2015, 27, 3505-3515.	6.7	153
83	Europium-engineered iron oxide nanocubes with high T ₁ and T ₂ contrast abilities for MRI in living subjects. Nanoscale, 2015, 7, 6843-6850.	5.6	68
84	Highly magnetic iron carbide nanoparticles as effective T ₂ contrast agents. Nanoscale, 2014, 6, 726-730.	5.6	81
85	Interplay between Longitudinal and Transverse Contrasts in Fe ₃ O ₄ Nanoplates with (111) Exposed Surfaces. ACS Nano, 2014, 8, 7976-7985.	14.6	157
86	NMR-based metabonomic analysis of MnO-embedded iron oxide nanoparticles as potential dual-modal contrast agents. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	13
87	Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nature Communications, 2013, 4, 2266.	12.8	399
88	Gadolinium embedded iron oxide nanoclusters as T1–T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery. Nanoscale, 2013, 5, 8098.	5.6	47
89	Engineered Iron-Oxide-Based Nanoparticles as Enhanced <i>T</i> ₁ Contrast Agents for Efficient Tumor Imaging. ACS Nano, 2013, 7, 3287-3296.	14.6	226
90	A Synergistically Enhanced <i>T</i> ₁ – <i>T</i> ₂ Dualâ€Modal Contrast Agent. Advanced Materials, 2012, 24, 6223-6228.	21.0	269

1

#	Article	IF	CITATIONS
91	Multifunctional Ag@Fe2O3 yolk–shell nanoparticles for simultaneous capture, kill, and removal of pathogen. Journal of Materials Chemistry, 2011, 21, 16344.	6.7	87

92 Magnetic Nanomaterials for Diagnostics. , 0, , 365-392.