Zijian Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11570965/publications.pdf

Version: 2024-02-01

92	12,511	56	92
papers	citations	h-index	g-index
93	93	93	12361
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chemical Society Reviews, 2016, 45, 6597-6626.	38.1	1,483
2	Simultaneous Fentonâ€like Ion Delivery and Glutathione Depletion by MnO ₂ â€Based Nanoagent to Enhance Chemodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 4902-4906.	13.8	1,068
3	Synthesis of Copper Peroxide Nanodots for H ₂ O ₂ Self-Supplying Chemodynamic Therapy. Journal of the American Chemical Society, 2019, 141, 9937-9945.	13.7	759
4	Emerging Strategies of Cancer Therapy Based on Ferroptosis. Advanced Materials, 2018, 30, e1704007.	21.0	478
5	Fenton-Reaction-Acceleratable Magnetic Nanoparticles for Ferroptosis Therapy of Orthotopic Brain Tumors. ACS Nano, 2018, 12, 11355-11365.	14.6	449
6	Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nature Communications, 2013, 4, 2266.	12.8	399
7	Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 6492-6496.	13.8	328
8	Structure–Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. Advanced Materials, 2019, 31, e1804567.	21.0	279
9	A Synergistically Enhanced <i>T</i> ₁ â€" <i>T</i> ₂ Dualâ€Modal Contrast Agent. Advanced Materials, 2012, 24, 6223-6228.	21.0	269
10	Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for $<$ i> $<$ i> $<$ <i<math><bi>$<$sub>1$<$b/sub>-Weighted Magnetic Resonance Imaging and Chemotherapy. ACS Nano, 2017, 11, 10992-11004.</i<math>	14.6	239
11	Endoplasmic Reticulum Targeting to Amplify Immunogenic Cell Death for Cancer Immunotherapy. Nano Letters, 2020, 20, 1928-1933.	9.1	235
12	Engineered Iron-Oxide-Based Nanoparticles as Enhanced <i>T</i> ₁ Contrast Agents for Efficient Tumor Imaging. ACS Nano, 2013, 7, 3287-3296.	14.6	226
13	Tumorâ€Specific Drug Release and Reactive Oxygen Species Generation for Cancer Chemo/Chemodynamic Combination Therapy. Advanced Science, 2019, 6, 1801986.	11.2	221
14	Antitumor Activity of a Unique Polymer That Incorporates a Fluorescent Self-Assembled Metallacycle. Journal of the American Chemical Society, 2017, 139, 15940-15949.	13.7	203
15	Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nature Communications, 2020, 11 , 4909.	12.8	199
16	A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nature Communications, 2018, 9, 4335.	12.8	197
17	Simultaneous Fentonâ€like Ion Delivery and Glutathione Depletion by MnO ₂ â€Based Nanoagent to Enhance Chemodynamic Therapy. Angewandte Chemie, 2018, 130, 4996-5000.	2.0	195
18	Core–Satellite Polydopamine–Gadoliniumâ€Metallofullerene Nanotheranostics for Multimodal Imaging Guided Combination Cancer Therapy. Advanced Materials, 2017, 29, 1701013.	21.0	185

#	Article	IF	Citations
19	Endogenous Labile Iron Pool-Mediated Free Radical Generation for Cancer Chemodynamic Therapy. Journal of the American Chemical Society, 2020, 142, 15320-15330.	13.7	170
20	<i>In Situ</i> Dendritic Cell Vaccine for Effective Cancer Immunotherapy. ACS Nano, 2019, 13, 3083-3094.	14.6	164
21	Interplay between Longitudinal and Transverse Contrasts in Fe ₃ O ₄ Nanoplates with (111) Exposed Surfaces. ACS Nano, 2014, 8, 7976-7985.	14.6	157
22	A Catalaseâ€Like Metalâ€Organic Framework Nanohybrid for O ₂ â€Evolving Synergistic Chemoradiotherapy. Angewandte Chemie - International Edition, 2019, 58, 8752-8756.	13.8	154
23	Anisotropic Shaped Iron Oxide Nanostructures: Controlled Synthesis and Proton Relaxation Shortening Effects. Chemistry of Materials, 2015, 27, 3505-3515.	6.7	153
24	Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chemical Society Reviews, 2019, 48, 5140-5176.	38.1	150
25	Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nature Communications, 2017, 8, 1777.	12.8	146
26	Deep Photoacoustic/Luminescence/Magnetic Resonance Multimodal Imaging in Living Subjects Using Highâ€Efficiency Upconversion Nanocomposites. Advanced Materials, 2016, 28, 6411-6419.	21.0	142
27	Cooperative Assembly of Magneto-Nanovesicles with Tunable Wall Thickness and Permeability for MRI-Guided Drug Delivery. Journal of the American Chemical Society, 2018, 140, 4666-4677.	13.7	138
28	Hypochlorous Acid Promoted Platinum Drug Chemotherapy by Myeloperoxidase-Encapsulated Therapeutic Metal Phenolic Nanoparticles. ACS Nano, 2018, 12, 455-463.	14.6	134
29	Self-Assembled Responsive Bilayered Vesicles with Adjustable Oxidative Stress for Enhanced Cancer Imaging and Therapy. Journal of the American Chemical Society, 2019, 141, 8158-8170.	13.7	132
30	Targeted scavenging of extracellular ROS relieves suppressive immunogenic cell death. Nature Communications, 2020, 11, 4951.	12.8	132
31	Glutathione-Responsive Self-Assembled Magnetic Gold Nanowreath for Enhanced Tumor Imaging and Imaging-Guided Photothermal Therapy. ACS Nano, 2018, 12, 8129-8137.	14.6	131
32	Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications. Theranostics, 2020, 10, 1296-1318.	10.0	127
33	Surface and Interfacial Engineering of Iron Oxide Nanoplates for Highly Efficient Magnetic Resonance Angiography. ACS Nano, 2015, 9, 3012-3022.	14.6	124
34	Artificial local magnetic field inhomogeneity enhances T2 relaxivity. Nature Communications, 2017, 8, 15468.	12.8	114
35	Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nature Communications, 2019, 10, 1241.	12.8	112
36	<i>T</i> ₁ – <i>T</i> ₂ Dual-Modal Magnetic Resonance Imaging: From Molecular Basis to Contrast Agents. ACS Nano, 2017, 11, 5227-5232.	14.6	108

#	Article	IF	Citations
37	Doubleâ€Layered Plasmonic–Magnetic Vesicles by Selfâ€Assembly of Janus Amphiphilic Gold–Iron(II,III) Oxide Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 8110-8114.	13.8	107
38	Yolk–Shell Nanostructure: An Ideal Architecture to Achieve Harmonious Integration of Magnetic–Plasmonic Hybrid Theranostic Platform. Advanced Materials, 2017, 29, 1606681.	21.0	106
39	Magnetoâ€Plasmonic Janus Vesicles for Magnetic Fieldâ€Enhanced Photoacoustic and Magnetic Resonance Imaging of Tumors. Angewandte Chemie - International Edition, 2016, 55, 15297-15300.	13.8	102
40	Dotted Core–Shell Nanoparticles for <i>T</i> ₁ â€Weighted MRI of Tumors. Advanced Materials, 2018, 30, e1803163.	21.0	96
41	Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics, 2019, 9, 7200-7209.	10.0	96
42	Multifunctional Ag@Fe2O3 yolk–shell nanoparticles for simultaneous capture, kill, and removal of pathogen. Journal of Materials Chemistry, 2011, 21, 16344.	6.7	87
43	Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Advanced Drug Delivery Reviews, 2020, 158, 73-90.	13.7	83
44	Highly magnetic iron carbide nanoparticles as effective T ₂ contrast agents. Nanoscale, 2014, 6, 726-730.	5.6	81
45	In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials, 2019, 218, 119365.	11.4	80
46	Self-Assembly of Semiconducting-Plasmonic Gold Nanoparticles with Enhanced Optical Property for Photoacoustic Imaging and Photothermal Therapy. Theranostics, 2017, 7, 2177-2185.	10.0	79
47	Coordinating the Mechanisms of Action of Ferroptosis and the Photothermal Effect for Cancer Theranostics. Angewandte Chemie - International Edition, 2022, 61, .	13.8	74
48	Artificial Molecular Machines in Nanotheranostics. ACS Nano, 2018, 12, 7-12.	14.6	73
49	Europium-engineered iron oxide nanocubes with high T ₁ and T ₂ contrast abilities for MRI in living subjects. Nanoscale, 2015, 7, 6843-6850.	5 . 6	68
50	Oxygenâ€Evolving Manganese Ferrite Nanovesicles for Hypoxiaâ€Responsive Drug Delivery and Enhanced Cancer Chemoimmunotherapy. Advanced Functional Materials, 2021, 31, 2008078.	14.9	65
51	Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angewandte Chemie, 2017, 129, 6592-6596.	2.0	63
52	Porphyrin Nanocageâ€Embedded Singleâ€Molecular Nanoparticles for Cancer Nanotheranostics. Angewandte Chemie - International Edition, 2019, 58, 8799-8803.	13.8	62
53	Early stratification of radiotherapy response by activatable inflammation magnetic resonance imaging. Nature Communications, 2020, 11 , 3032 .	12.8	62
54	Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials, 2020, 235, 119783.	11.4	61

#	Article	IF	CITATIONS
55	A multiple gadolinium complex decorated fullerene as a highly sensitive T ₁ contrast agent. Chemical Communications, 2015, 51, 4390-4393.	4.1	59
56	A supramolecular hybrid material constructed from graphene oxide and a pillar[6]arene-based host–guest complex as an ultrasound and photoacoustic signal nanoamplifier. Materials Horizons, 2018, 5, 429-435.	12.2	59
57	Synchronous Chemoradiation Nanovesicles by Xâ€Ray Triggered Cascade of Drug Release. Angewandte Chemie - International Edition, 2018, 57, 8463-8467.	13.8	59
58	Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T ₁ contrast ability. Nanoscale, 2016, 8, 3768-3774.	5.6	57
59	Porous gold nanocluster-decorated manganese monoxide nanocomposites for microenvironment-activatable MR/photoacoustic/CT tumor imaging. Nanoscale, 2018, 10, 3631-3638.	5.6	54
60	Core-shell metal-organic frameworks with fluorescence switch to trigger an enhanced photodynamic therapy. Theranostics, 2019, 9, 2791-2799.	10.0	53
61	Size-transformable antigen-presenting cell–mimicking nanovesicles potentiate effective cancer immunotherapy. Science Advances, 2020, 6, .	10.3	53
62	Targeting Neutrophils for Enhanced Cancer Theranostics. Advanced Materials, 2020, 32, e2002739.	21.0	52
63	Xâ€rayâ€Controlled Bilayer Permeability of Bionic Nanocapsules Stabilized by Nucleobase Pairing Interactions for Pulsatile Drug Delivery. Advanced Materials, 2019, 31, e1903443.	21.0	51
64	Gadolinium embedded iron oxide nanoclusters as T1–T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery. Nanoscale, 2013, 5, 8098.	5.6	47
65	Tumor Microenvironment-Activated Ultrasensitive Nanoprobes for Specific Detection of Intratumoral Glutathione by Ratiometric Photoacoustic Imaging. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27558-27567.	8.0	46
66	Reactive Oxygen Species Activatable Heterodimeric Prodrug as Tumor-Selective Nanotheranostics. ACS Nano, 2020, 14, 16875-16886.	14.6	45
67	Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials, 2020, 244, 119979.	11.4	40
68	Tale of Two Magnets: An Advanced Magnetic Targeting System. ACS Nano, 2020, 14, 7-11.	14.6	37
69	Biodegradable hollow manganese/cobalt oxide nanoparticles for tumor theranostics. Nanoscale, 2019, 11, 23021-23026.	5.6	35
70	Gadolinium Metallofullereneâ€Based Activatable Contrast Agent for Tumor Signal Amplification and Monitoring of Drug Release. Small, 2019, 15, 1900691.	10.0	34
71	A Catalaseâ€Like Metalâ€Organic Framework Nanohybrid for O ₂ â€Evolving Synergistic Chemoradiotherapy. Angewandte Chemie, 2019, 131, 8844-8848.	2.0	33
72	Gadolinium Metallofullerene-Polypyrrole Nanoparticles for Activatable Dual-Modal Imaging-Guided Photothermal Therapy. ACS Applied Materials & Emp; Interfaces, 2018, 10, 28382-28389.	8.0	32

#	Article	IF	CITATIONS
73	An Albumin-Binding <i>T</i> ₁ â€" <i>T</i> ₂ Dual-Modal MRI Contrast Agents for Improved Sensitivity and Accuracy in Tumor Imaging. Bioconjugate Chemistry, 2019, 30, 1821-1829.	3.6	32
74	Water bridge coordination on the metal-rich facets of Gd ₂ O ₃ nanoplates confers high T ₁ relaxivity. Nanoscale, 2016, 8, 17887-17894.	5.6	31
75	Radiolabeled Angiogenesis-Targeting Croconaine Nanoparticles for Trimodality Imaging Guided Photothermal Therapy of Glioma. ACS Applied Nano Materials, 2018, 1, 1741-1749.	5.0	27
76	Double‣ayered Plasmonic–Magnetic Vesicles by Selfâ€Assembly of Janus Amphiphilic Gold–Iron(II,III) Oxide Nanoparticles. Angewandte Chemie, 2017, 129, 8222-8226.	2.0	25
77	Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Coâ€essembly with Camptothecin Prodrug. Angewandte Chemie - International Edition, 2021, 60, 21033-21039.	13.8	22
78	A Logic-Gated Modular Nanovesicle Enables Programmable Drug Release for On-Demand Chemotherapy. Theranostics, 2019, 9, 1358-1368.	10.0	21
79	A Protein-Corona-Free <i>T</i> ₁ â€" <i>T</i> ₂ Dual-Modal Contrast Agent for Accurate Imaging of Lymphatic Tumor Metastasis. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28286-28293.	8.0	18
80	Gadolinium hybrid iron oxide nanocomposites for dual T ₁ - and T ₂ -weighted MR imaging of cell labeling. Biomaterials Science, 2017, 5, 50-56.	5.4	18
81	Enhancing Chemotherapy of p53â€Mutated Cancer through Ubiquitinationâ€Dependent Proteasomal Degradation of Mutant p53 Proteins by Engineered ZnFeâ€4 Nanoparticles. Advanced Functional Materials, 2020, 30, 2001994.	14.9	18
82	Ultrasmall Quantum Dots with Broadâ€Spectrum Metal Doping Ability for Trimodal Molecular Imaging. Advanced Functional Materials, 2019, 29, 1901671.	14.9	16
83	Improving the sensitivity of $\langle i \rangle T \langle i \rangle \langle sub \rangle 1 \langle sub \rangle \rangle$ contrast-enhanced MRI and sensitive diagnosing tumors with ultralow doses of MnO octahedrons. Theranostics, 2021, 11, 6966-6982.	10.0	16
84	Coordinating the Mechanisms of Action of Ferroptosis and the Photothermal Effect for Cancer Theranostics. Angewandte Chemie, 2022, 134, .	2.0	15
85	Imaging Beyond Seeing: Early Prognosis of Cancer Treatment. Small Methods, 2021, 5, e2001025.	8.6	14
86	NMR-based metabonomic analysis of MnO-embedded iron oxide nanoparticles as potential dual-modal contrast agents. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	13
87	Magnetoâ€Plasmonic Janus Vesicles for Magnetic Fieldâ€Enhanced Photoacoustic and Magnetic Resonance Imaging of Tumors. Angewandte Chemie, 2016, 128, 15523-15526.	2.0	12
88	Porphyrin Nanocageâ€Embedded Singleâ€Molecular Nanoparticles for Cancer Nanotheranostics. Angewandte Chemie, 2019, 131, 8891-8895.	2.0	7
89	Cancer Therapy: Emerging Strategies of Cancer Therapy Based on Ferroptosis (Adv. Mater. 12/2018). Advanced Materials, 2018, 30, 1870084.	21.0	6
90	Synchronous Chemoradiation Nanovesicles by Xâ€Ray Triggered Cascade of Drug Release. Angewandte Chemie, 2018, 130, 8599-8603.	2.0	4

#	Article	IF	CITATIONS
91	Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Coâ€assembly with Camptothecin Prodrug. Angewandte Chemie, 2021, 133, 21201-21207.	2.0	2
92	Magnetic Nanomaterials for Diagnostics. , 0, , 365-392.		1