
Shinji Masui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1157057/publications.pdf Version: 2024-02-01

Сніми Масци

#	Article	IF	CITATIONS
1	Optimized conditions for the supplementation of human-induced pluripotent stem cell cultures with a CSK-3 inhibitor during embryoid body formation with the aim of inducing differentiation into mesodermal and cardiac lineage. Journal of Bioscience and Bioengineering, 2020, 129, 371-378.	2.2	2
2	Direct Reprogramming Into Corneal Epithelial Cells Using a Transcriptional Network Comprising PAX6, OVOL2, and KLF4. Cornea, 2019, 38, S34-S41.	1.7	19
3	Srf destabilizes cellular identity by suppressing cell-type-specific gene expression programs. Nature Communications, 2018, 9, 1387.	12.8	35
4	Validation of Common Housekeeping Genes as Reference for qPCR Gene Expression Analysis During iPS Reprogramming Process. Scientific Reports, 2018, 8, 8716.	3.3	80
5	Artificial acceleration of mammalian cell reprogramming by bacterial proteins. Genes To Cells, 2017, 22, 918-928.	1.2	4
6	PAX6 regulates human corneal epithelium cell identity. Experimental Eye Research, 2017, 154, 30-38.	2.6	49
7	OVOL2 Maintains the Transcriptional Program of Human Corneal Epithelium by Suppressing Epithelial-to-Mesenchymal Transition. Cell Reports, 2016, 15, 1359-1368.	6.4	66
8	De novo CpG methylation on an artificial chromosome-like vector maintained for a long-term in mammalian cells. Biotechnology Letters, 2016, 38, 731-740.	2.2	3
9	Kinetics of drug selection systems in mouse embryonic stem cells. BMC Biotechnology, 2013, 13, 64.	3.3	25
10	Transcription factors interfering with dedifferentiation induce cell type-specific transcriptional profiles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6412-6417.	7.1	37
11	Function of Oct3/4 and Sox2 in Pluripotency. , 2011, , 113-125.		1
12	Eed/Sox2 regulatory loop controls ES cell self-renewal through histone methylation and acetylation. EMBO Journal, 2011, 30, 2190-2204.	7.8	28
13	Intracellular reactivation of transcription factors fused with protein transduction domain. Journal of Biotechnology, 2011, 154, 298-303.	3.8	6
14	A Distinct Role for Pin1 in the Induction and Maintenance of Pluripotency. Journal of Biological Chemistry, 2011, 286, 11593-11603.	3.4	49
15	Pluripotency maintenance mechanism of embryonic stem cells and reprogramming. International Journal of Hematology, 2010, 91, 360-372.	1.6	8
16	Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. International Journal of Developmental Biology, 2010, 54, 699-705.	0.6	75
17	Pax2 overexpression in embryoid bodies induces upregulation of integrin α8 and aquaporin-1. In Vitro Cellular and Developmental Biology - Animal, 2009, 45, 62-68.	1.5	12
18	Differential Requirement for Nucleostemin in Embryonic Stem Cell and Neural Stem Cell Viability. Stem Cells, 2009, 27, 1066-1076.	3.2	30

Shinji Masui

#	Article	IF	CITATIONS
19	Cloned cells from the murine dermal papilla have hair-inducing ability. Journal of Dermatological Science, 2009, 54, 129-131.	1.9	11
20	Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Developmental Biology, 2008, 8, 45.	2.1	110
21	Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data. BMC Genomics, 2008, 9, 269.	2.8	144
22	Consequence of the loss of Sox2 in the developing brain of the mouse. FEBS Letters, 2008, 582, 2811-2815.	2.8	82
23	Prox1 Induces Lymphatic Endothelial Differentiation via Integrin α9 and Other Signaling Cascades. Molecular Biology of the Cell, 2007, 18, 1421-1429.	2.1	131
24	Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 2007, 9, 625-635.	10.3	1,061
25	Dissecting Oct3/4-Regulated Gene Networks in Embryonic Stem Cells by Expression Profiling. PLoS ONE, 2006, 1, e26.	2.5	161
26	Klf4 Cooperates with Oct3/4 and Sox2 To Activate the Lefty1 Core Promoter in Embryonic Stem Cells. Molecular and Cellular Biology, 2006, 26, 7772-7782.	2.3	227
27	An efficient system to establish multiple embryonic stem cell lines carrying an inducible expression unit. Nucleic Acids Research, 2005, 33, e43-e43.	14.5	100
28	The Sox-2 Regulatory Regions Display Their Activities in Two Distinct Types of Multipotent Stem Cells. Molecular and Cellular Biology, 2004, 24, 4207-4220.	2.3	93
29	Differentiation of embryonic stem cells is induced by GATA factors. Genes and Development, 2002, 16, 784-789.	5.9	460
30	Phenotypic Complementation Establishes Requirements for Specific POU Domain and Generic Transactivation Function of Oct-3/4 in Embryonic Stem Cells. Molecular and Cellular Biology, 2002, 22, 1526-1536.	2.3	263
31	Bacteriophage WO and Virus-like Particles in Wolbachia, an Endosymbiont of Arthropods. Biochemical and Biophysical Research Communications, 2001, 283, 1099-1104.	2.1	96
32	Distribution and Evolution of Bacteriophage WO in Wolbachia, the Endosymbiont Causing Sexual Alterations in Arthropods. Journal of Molecular Evolution, 2000, 51, 491-497.	1.8	156
33	Genes for the Type IV Secretion System in an Intracellular Symbiont, Wolbachia, a Causative Agent of Various Sexual Alterations in Arthropods. Journal of Bacteriology, 2000, 182, 6529-6531.	2.2	64
34	The First Detection of the Insertion Sequence ISW1 in the Intracellular Reproductive Parasite Wolbachia. Plasmid, 1999, 42, 13-19.	1.4	25
35	<i>groE</i> -Homologous Operon of Wolbachia, an Intracellular Symbiont of Arthropods: A New Approach for Their Phylogeny. Zoological Science, 1997, 14, 701-706.	0.7	52