
Sangsik Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1156962/publications.pdf Version: 2024-02-01

SANCSIK FONC

#	Article	IF	CITATIONS
1	Ionic Liquid in Li Salt Electrolyte: Modifying the Li + Transport Mechanism by Coordination to an Asymmetric Anion. Advanced Energy and Sustainability Research, 2021, 2, 2000078.	5.8	27
2	Asymmetric ammonium-based ionic liquids as electrolyte components for safer, high-energy, electrochemical storage devices. Energy Storage Materials, 2019, 18, 1-9.	18.0	23
3	Ionic Liquid-Based Electrolytes for Sodium-Ion Batteries: Tuning Properties To Enhance the Electrochemical Performance of Manganese-Based Layered Oxide Cathode. ACS Applied Materials & Interfaces, 2019, 11, 22278-22289.	8.0	49
4	Prototype rechargeable magnesium batteries using ionic liquid electrolytes. Journal of Power Sources, 2019, 423, 52-59.	7.8	48
5	Enabling Reversible (De)Lithiation of Aluminum by using Bis(fluorosulfonyl)imideâ€Based Electrolytes. ChemSusChem, 2019, 12, 208-212.	6.8	19
6	Large-scale stationary energy storage: Seawater batteries with high rate and reversible performance. Energy Storage Materials, 2019, 16, 56-64.	18.0	41
7	Towards Highâ€Performance Aqueous Sodiumâ€Ion Batteries: Stabilizing the Solid/Liquid Interface for NASICONâ€Type Na ₂ VTi(PO ₄) ₃ using Concentrated Electrolytes. ChemSusChem, 2018, 11, 1382-1389.	6.8	75
8	Communication: Investigation of ion aggregation in ionic liquids and their solutions with lithium salt under high pressure. Journal of Chemical Physics, 2018, 148, 031102.	3.0	16
9	Connection between Lithium Coordination and Lithium Diffusion in [Pyr _{12O1}][FTFSI] Ionic Liquid Electrolytes. ChemSusChem, 2018, 11, 1981-1989.	6.8	46
10	A multiple electrolyte concept for lithium-metal batteries. Solid State Ionics, 2018, 316, 66-74.	2.7	13
11	Relevance of ion clusters for Li transport at elevated salt concentrations in [Pyr _{12O1}][FTFSI] ionic liquid-based electrolytes. Chemical Communications, 2018, 54, 4278-4281.	4.1	56
12	Lowâ€Polarization Lithium–Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte. ChemSusChem, 2018, 11, 229-236.	6.8	35
13	New Electrode and Electrolyte Configurations for Lithiumâ€Oxygen Battery. Chemistry - A European Journal, 2018, 24, 3178-3185.	3.3	12
14	MnPO ₄ â€Coated Li(Ni _{0.4} Co _{0.2} Mn _{0.4})O ₂ for Lithium(â€Ion) Batteries with Outstanding Cycling Stability and Enhanced Lithiation Kinetics. Advanced Energy Materials, 2018, 8, 1801573.	19.5	87
15	Comprehensive Insights into the Thermal Stability, Biodegradability, and Combustion Chemistry of Pyrrolidiniumâ€Based Ionic Liquids. ChemSusChem, 2017, 10, 3146-3159.	6.8	44
16	Exploring the Ni redox activity in polyanionic compounds as conceivable high potential cathodes for Na rechargeable batteries. NPG Asia Materials, 2017, 9, e370-e370.	7.9	52
17	Decoupling effective Li+ ion conductivity from electrolyte viscosity for improved room-temperature cell performance. Journal of Power Sources, 2017, 342, 335-341.	7.8	50
18	The Role of Ionic Liquid in Oxygen Reduction Reaction for Lithium-air Batteries. Electrochimica Acta, 2017, 247, 610-616.	5.2	14

SANGSIK JEONG

#	Article	IF	CITATIONS
19	Novel Ternary Polymer Electrolytes Based on Poly(lactic acid) from Sustainable Sources. ChemElectroChem, 2017, 4, 463-467.	3.4	16
20	Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions. ChemSusChem, 2016, 9, 462-471.	6.8	167
21	Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes. Energy and Environmental Science, 2016, 9, 3210-3220.	30.8	136
22	Enhanced Cycling Ability of V ₂ O ₅ Aerogel using Roomâ€Temperature lonic Liquidâ€Based Electrolytes. ChemElectroChem, 2016, 3, 1048-1053.	3.4	9
23	Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte. ChemSusChem, 2016, 9, 2-2.	6.8	1
24	Ecoâ€friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte. ChemSusChem, 2016, 9, 42-49.	6.8	42
25	High power, solvent-free electrochemical double layer capacitors based on pyrrolidinium dicyanamide ionic liquids. Journal of Power Sources, 2015, 293, 65-70.	7.8	68
26	Ternary polymer electrolytes incorporating pyrrolidinium-imide ionic liquids. RSC Advances, 2015, 5, 13598-13606.	3.6	43
27	Crystalline Complexes of Pyr _{12O1} TFSI-Based Ionic Liquid Electrolytes. Journal of Physical Chemistry C, 2015, 119, 5878-5887.	3.1	11
28	Increased Capacity of LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ –Li[Li _{1/3} Mn _{2/3 Cathodes by MnO_{<i>x</i>}â€surface Modification for Lithiumâ€ion Batteries. Energy Technology, 2014, 2, 188-193.}]0	₂
29	Mechanisms of Magnesium Ion Transport in Pyrrolidinium Bis(trifluoromethanesulfonyl)imide-Based Ionic Liquid Electrolytes. Journal of Physical Chemistry C, 2014, 118, 28361-28368.	3.1	28
30	Li-doped N-methoxyethyl-N-methylpyrrolidinium fluorosulfonyl-(trifluoromethanesulfonyl)imide as electrolyte for reliable lithium ion batteries. Journal of Power Sources, 2014, 269, 645-650.	7.8	26
31	Complex Nature of Ionic Coordination in Magnesium Ionic Liquid-Based Electrolytes: Solvates with Mobile Mg ²⁺ Cations. Journal of Physical Chemistry C, 2014, 118, 9966-9973.	3.1	121
32	Anodic stability of aluminum current collectors in an ionic liquid based on the (fluorosulfonyl)(trifluoromethanesulfonyl)imide anion and its implication on high voltage supercapacitors. Electrochemistry Communications, 2014, 38, 117-119.	4.7	36
33	Conformations and Vibrational Assignments of the (Fluorosulfonyl)(trifluoromethanesulfonyl)imide Anion in Ionic Liquids. Journal of Physical Chemistry C, 2013, 117, 24206-24212.	3.1	24
34	Improved electrochemical performance of LiMO2 (M=Mn, Ni, Co)–Li2MnO3 cathode materials in ionic liquid-based electrolyte. Journal of Power Sources, 2013, 239, 490-495.	7.8	37
35	Carbon coated lithium sulfide particles for lithium battery cathodes. Journal of Power Sources, 2013, 235, 220-225.	7.8	84
36	Natural, cheap and environmentally friendly binder for supercapacitors. Journal of Power Sources, 2013, 221, 14-20.	7.8	91

Sangsik Jeong

#	Article	IF	CITATIONS
37	Mixtures of ionic liquids for low temperature electrolytes. Electrochimica Acta, 2012, 82, 69-74.	5.2	85
38	Ionic mobility in ternary polymer electrolytes for lithium-ion batteries. Electrochimica Acta, 2012, 86, 330-338.	5.2	95
39	Natural cellulose as binder for lithium battery electrodes. Journal of Power Sources, 2012, 199, 331-335.	7.8	126
40	Development of ionic liquid-based lithium battery prototypes. Journal of Power Sources, 2012, 199, 239-246.	7.8	119
41	Inhibition of Self-Aggregation in Ionic Liquid Electrolytes for High-Energy Electrochemical Devices. Journal of Physical Chemistry C, 2011, 115, 19431-19436.	3.1	58
42	Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). Journal of Power Sources, 2011, 196, 9719-9730.	7.8	132
43	New Insights to Selfâ€Aggregation in Ionic Liquid Electrolytes for Highâ€Energy Electrochemical Devices. Advanced Energy Materials, 2011, 1, 274-281.	19.5	69
44	Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries. Journal of Power Sources, 2011, 196, 2187-2194.	7.8	180
45	Li-ion anodes in air-stable and hydrophobic ionic liquid-based electrolyte for safer and greener batteries. International Journal of Energy Research, 2010, 34, 97-106.	4.5	45
46	Melting Behavior and Ionic Conductivity in Hydrophobic Ionic Liquids. Journal of Physical Chemistry A, 2010, 114, 1776-1782.	2.5	62
47	Melting Behavior of Pyrrolidinium-Based Ionic Liquids and Their Binary Mixtures. Journal of Physical Chemistry C, 2010, 114, 12364-12369.	3.1	122
48	Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochimica Acta, 2008, 53, 2226-2231.	5.2	285
49	Characterization of Solvent-Free Polymer Electrolytes Consisting of Ternary PEO–LiTFSI–PYR[sub 14]â€,TFSI. Journal of the Electrochemical Society, 2006, 153, A1649.	2.9	117
50	FT-Raman spectroscopy study on the effect of ceramic fillers in P(EO)LiBETI. Solid State Ionics, 2005, 176, 571-577.	2.7	7