Jeremy Petit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11568/publications.pdf

Version: 2024-02-01

	1 -01	279798	315739
52	1,581	23	38
papers	citations	h-index	g-index
52	52	52	1648
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 2016, 188, 32-49.	5.2	301
2	Influence of calcium on \hat{l}^2 -lactoglobulin denaturation kinetics: Implications in unfolding and aggregation mechanisms. Journal of Dairy Science, 2011, 94, 5794-5810.	3.4	89
3	Lactobacillus rhamnosus GG encapsulation by spray-drying: Milk proteins clotting control to produce innovative matrices. Journal of Food Engineering, 2017, 193, 10-19.	5.2	70
4	Recent advances on lactose intolerance: Tolerance thresholds and currently available answers. Critical Reviews in Food Science and Nutrition, 2017, 57, 3344-3356.	10.3	58
5	\hat{l}^2 -lactoglobulin denaturation, aggregation, and fouling in a plate heat exchanger: Pilot-scale experiments and dimensional analysis. Chemical Engineering Science, 2013, 101, 432-450.	3.8	51
6	Analysis by Raman spectroscopy of the conformational structure of whey proteins constituting fouling deposits during the processing in a heat exchanger. Journal of Food Engineering, 2012, 110, 86-94.	5.2	49
7	Encapsulation of curcumin in milk powders by spray-drying: Physicochemistry, rehydration properties, and stability during storage. Powder Technology, 2019, 345, 601-607.	4.2	48
8	Improvement of antioxidant activity and polyphenol content of Hypericum perforatum and Achillea millefolium powders using successive grinding and sieving. Industrial Crops and Products, 2016, 87, 116-123.	5.2	45
9	Digestibility of common native starches with reference to starch granule size, shape and surface features towards guidelines for starchâ€containing food products. International Journal of Food Science and Technology, 2019, 54, 2132-2140.	2.7	44
10	Predicting the distribution of whey protein fouling in a plate heat exchanger using the kinetic parameters of the thermal denaturation reaction of \hat{l}^2 -lactoglobulin and the bulk temperature profiles. Journal of Dairy Science, 2016, 99, 9611-9630.	3.4	42
11	Antioxidant and antiacetylcholinesterase activities of different granulometric classes of Salix alba (L.) bark powders. Powder Technology, 2016, 301, 649-656.	4.2	39
12	Links between particle surface hardening and rehydration impairment during micellar casein powder storage. Food Hydrocolloids, 2016, 61, 277-285.	10.7	38
13	Surface chemistry and microscopy of food powders. Progress in Surface Science, 2017, 92, 409-429.	8.3	38
14	Structure, gelation, and antioxidant properties of curcumin-doped casein micelle powder produced by spray-drying. Food and Function, 2018, 9, 971-981.	4.6	38
15	Characterisation of flow properties of foutou and foufou flours, staple foods in West Africa, using the FT4 powder rheometer. Journal of Food Measurement and Characterization, 2017, 11, 1128-1136.	3.2	34
16	A CFD model as a tool to simulate \hat{l}^2 -lactoglobulin heat-induced denaturation and aggregation in a plate heat exchanger. Journal of Food Engineering, 2014, 136, 56-63.	5.2	32
17	Impact of formulation on reconstitution and flowability of spray-dried milk powders. Powder Technology, 2020, 372, 107-116.	4.2	32
18	Metal complexes stability constant determination by hyphenation of capillary electrophoresis with inductively coupled plasma mass spectrometry: The case of 1:1 metal-to-ligand stoichiometry. Journal of Chromatography A, 2009, 1216, 4113-4120.	3.7	31

#	Article	IF	CITATIONS
19	How do grinding and sieving impact on physicochemical properties, polyphenol content, and antioxidant activity of Hieracium pilosella L. powders?. Journal of Functional Foods, 2017, 35, 666-672.	3.4	29
20	Physico-chemical and rheological properties of Lebanese kishk powder, a dried fermented milk-cereal mixture. Powder Technology, 2016, 292, 307-313.	4.2	27
21	Impact of Spray-Drying Process Parameters on Dairy Powder Surface Composition and Properties. Drying Technology, 2015, 33, 1654-1661.	3.1	26
22	Advances in Food Powder Agglomeration Engineering. Advances in Food and Nutrition Research, 2013, 69, 41-103.	3.0	25
23	Role of Whey Components in the Kinetics and Thermodynamics of \hat{l}^2 -Lactoglobulin Unfolding and Aggregation. Food and Bioprocess Technology, 2016, 9, 1367-1379.	4.7	25
24	Is it possible to modulate the structure of skim milk particle through drying process and parameters?. Journal of Food Engineering, 2014, 142, 179-189.	5.2	24
25	Storage-induced caking of cocoa powder. Journal of Food Engineering, 2017, 199, 42-53.	5.2	24
26	Toward a better determination of dairy powders surface composition through XPS matrices development. Colloids and Surfaces B: Biointerfaces, 2015, 125, 12-20.	5.0	23
27	Local modifications of whey protein isolate powder surface during high temperature storage. Journal of Food Engineering, 2016, 178, 39-46.	5.2	22
28	Stability constants determination of successive metal complexes by hyphenated CEâ€ICPMS. Electrophoresis, 2010, 31, 355-363.	2.4	21
29	Ethnobotanical study of medicinal plants used by traditional healers for the treatment of oxidative stress-related diseases in the Congo Basin. Journal of Herbal Medicine, 2018, 13, 76-90.	2.0	21
30	Structure and gelation properties of casein micelles doped with curcumin under acidic conditions. Food and Function, 2015, 6, 3624-3633.	4.6	20
31	Successive grinding and sieving as a new tool to fractionate polyphenols and antioxidants of plants powders: Application to <i>Boscia senegalensis</i> seeds, <i>Dichrostachys glomerata</i> fruits, and <i>Hibiscus sabdariffa</i> calyx powders. Food Science and Nutrition, 2019, 7, 1795-1806.	3.4	19
32	Nutritional quality evaluation of commercial protein supplements. International Journal of Food Science and Technology, 2019, 54, 2586-2594.	2.7	19
33	A dimensional analysis approach for modelling the size of droplets formed by bi-fluid atomisation. Journal of Food Engineering, 2015, 149, 237-247.	5.2	18
34	Cocoa powder surface composition during aging: A focus on fat. Powder Technology, 2016, 292, 195-202.	4.2	16
35	Impact of Thermal and Chemical Pretreatments on Physicochemical, Rheological, and Functional Properties of Sweet Potato (Ipomea batatas Lam) Flour. Food and Bioprocess Technology, 2014, 7, 3618-3628.	4.7	15
36	Effect of sieved fractionation on the physical, flow and hydration properties of Boscia senegalensis Lam., Dichostachys glomerata Forssk. and Hibiscus sabdariffa L. powders. Food Science and Biotechnology, 2019, 28, 1375-1389.	2.6	15

#	Article	IF	Citations
37	Impact of spray-drying conditions on physicochemical properties and rehydration ability of skim dromedary and cow's milk powders. Drying Technology, 2022, 40, 665-677.	3.1	14
38	Main powder physicochemical characteristics influencing their reconstitution behavior. Powder Technology, 2021, 383, 65-73.	4.2	14
39	Effect of particle size and formulation on powder rheology. Particulate Science and Technology, 2021, 39, 362-370.	2.1	12
40	Effect of milling and sieving processes on the physicochemical properties of okra seed powders. International Journal of Food Science and Technology, 2020, 55, 2517-2530.	2.7	11
41	Impact of the whey protein/casein ratio on the reconstitution and flow properties of spray-dried dairy protein powders. Powder Technology, 2021, 391, 275-281.	4.2	11
42	Granulomorphometry: A suitable tool for identifying hydrophobic and disulfide bonds in β-lactoglobulin aggregates. Application to the study of β-lactoglobulin aggregation mechanism between 70 and 95°C. Journal of Dairy Science, 2012, 95, 4188-4202.	3.4	10
43	High-Throughput Identification of Candidate Strains for Biopreservation by Using Bioluminescent Listeria monocytogenes. Frontiers in Microbiology, 2018, 9, 1883.	3.5	8
44	Chemical fractionation of caseins by differential precipitation: influence of pH, calcium addition, protein concentration and temperature on the depletion in $\hat{l}\pm\hat{a}$ eand $\hat{l}^2\hat{a}$ easeins. International Journal of Food Science and Technology, 2020, 55, 542-552.	2.7	8
45	Effect of particle size on flow behaviour and physical properties of semiâ€ripe plantain (AA <i>B Musa</i>) Tj ETO	Qq1 _{2.7} 0.78	343 <u>1</u> 4 rgBT C
46	Shaving and breaking bacterial chains with a viscous flow. Soft Matter, 2020, 16, 9273-9291.	2.7	6
47	Inline high frequency ultrasonic particle sizer. Review of Scientific Instruments, 2013, 84, 075101.	1.3	3
48	Impact of sprayâ€drying conditions on flow properties of skim dromedary and cow's milk powders using the FT4 powder rheometer. Journal of Food Processing and Preservation, 2021, 45, e15566.	2.0	3
49	Descriptive modelling of food powders reconstitution kinetics followed by laser granulometry. Chemical Engineering Science, 2022, , 117440.	3.8	3
50	Total phenolic content, antioxidant activity, shelfâ€ife and reconstitutability of okra seeds powder: influence of milling and sieving processes. International Journal of Food Science and Technology, 2021, 56, 5139-5149.	2.7	2
51	Relationship between drying and grinding parameters and physicochemical properties of <i>Hibiscus sabdariffa</i> calyx powders. Particulate Science and Technology, 2023, 41, 32-41.	2.1	1
52	Manufacturing of Composite Pasta by a Mixing Plan. Food and Nutrition Sciences (Print), 2021, 12, 206-221.	0.4	0