Makoto Taniguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1156584/publications.pdf

Version: 2024-02-01

139 papers

8,807 citations

43 h-index 91 g-index

141 all docs

141 docs citations

times ranked

141

7395 citing authors

#	Article	IF	Citations
1	Water and Related Nexus as Sustainable Basis in Anthropocene: Water Diversity and Integrated Research. Trends in the Sciences, 2022, 27, 1_17-1_21 .	0.0	O
2	Editorial: Submarine Groundwater Discharge: Impacts on Coastal Ecosystem by Hidden Water and Dissolved Materials. Frontiers in Environmental Science, 2021, 8, .	1.5	1
3	Nutrient fluxes from rivers, groundwater, and the ocean into the coastal embayment along the Sanriku ria coast, Japan. Limnology and Oceanography, 2021, 66, 2728-2744.	1.6	6
4	Analysis of industrial water–energy–labor nexus zones for economic and resource-based impact assessment. Resources, Conservation and Recycling, 2021, 169, 105483.	5.3	10
5	A New Linkage Toward a Sustainable Society in COVID-19 Under the Global Environmental Change. Trends in the Sciences, 2021, 26, 11_72-11_77 .	0.0	1
6	Food-centric interlinkages in agricultural food-energy-water nexus under climate change and irrigation management. Resources, Conservation and Recycling, 2020, 163, 105099.	5.3	39
7	Identification of changes in subsurface temperature and groundwater flow after the 2016 Kumamoto earthquake using long-term well temperature–depth profiles. Journal of Hydrology, 2020, 582, 124530.	2.3	24
8	Identifying social responses to inundation disasters: a humanity–nature interaction perspective. Global Sustainability, 2020, 3, .	1.6	4
9	Directions and trends of international research on groundwater for sustainability. Journal of Groundwater Hydrology, 2020, 62, 5-13.	0.1	O
10	Unsustainable groundwater use for global food production and related international trade. Global Sustainability, $2019, 2, .$	1.6	29
11	Submarine Groundwater Discharge: Updates on Its Measurement Techniques, Geophysical Drivers, Magnitudes, and Effects. Frontiers in Environmental Science, 2019, 7, .	1.5	158
12	Increase in Fish Production Through Bottom-Up Trophic Linkage in Coastal Waters Induced by Nutrients Supplied via Submarine Groundwater. Frontiers in Environmental Science, 2019, 7, .	1.5	21
13	Recovery of Lost Nexus Synergy via Payment for Environmental Services in Kumamoto, Japan. Frontiers in Environmental Science, 2019, 7, .	1.5	18
14	Estimation of submarine groundwater discharge and its impact on the nutrient environment at Kamaiso beach, Yamagata, Japan. Nippon Suisan Gakkaishi, 2019, 85, 30-39.	0.0	2
15	Lacustrine groundwater discharge in southern Laguna de Bay, Philippines. Global Environmental Studies, 2018, , 87-100.	0.2	2
16	Evaluating the Tradeoffs between Groundwater Pumping for Snow-Melting and Nearshore Fishery Productivity in Obama City, Japan. Water (Switzerland), 2018, 10, 1556.	1.2	11
17	Fresh and Recirculated Submarine Groundwater Discharge Evaluated by Geochemical Tracers and a Seepage Meter at Two Sites in the Seto Inland Sea, Japan. Hydrology, 2018, 5, 61.	1.3	10
18	An Analysis of the Water-Energy-Food-Land Requirements and CO2 Emissions for Food Security of Rice in Japan. Sustainability, 2018, 10, 3354.	1.6	20

#	Article	IF	CITATIONS
19	Tradeoffs in the water-energy- food nexus in the urbanizing Asia-Pacific region. Water International, 2018, 43, 892-903.	0.4	9
20	Comparing anthropogenic heat input and heat accumulation in the subsurface of Osaka, Japan. Science of the Total Environment, 2018, 643, 1127-1136.	3.9	23
21	Assessment of Collaboration Process in Interdisciplinary Research of Water-energy-food Nexus by Means of Ontology Engineering. Global Environmental Studies, 2018, , 301-320.	0.2	0
22	Water-Energy-Food Nexus KAN: Current Status and Issues of Nexus Knowledge Action Network. Trends in the Sciences, 2018, 23, 4_71-4_74.	0.0	0
23	Challenges for future hydrology: From the view points of interdisciplinary and transdisciplinary studies. Journal of Japanese Association of Hydrological Sciences, 2018, 48, 133-146.	0.2	2
24	Water, energy, and food security in the Asia Pacific region. Journal of Hydrology: Regional Studies, 2017, 11, 9-19.	1.0	30
25	Scale dependence of controls on groundwater vulnerability in the water–energy–food nexus, California Coastal Basin aquifer system. Journal of Hydrology: Regional Studies, 2017, 11, 126-138.	1.0	18
26	Higher species richness and abundance of fish and benthic invertebrates around submarine groundwater discharge in Obama Bay, Japan. Journal of Hydrology: Regional Studies, 2017, 11, 139-146.	1.0	20
27	Supporting collaboration in interdisciplinary research of water–energy–food nexus by means of ontology engineering. Journal of Hydrology: Regional Studies, 2017, 11, 31-43.	1.0	15
28	Hot spring resort development in Laguna Province, Philippines: Challenges in water use regulation. Journal of Hydrology: Regional Studies, 2017, 11, 96-106.	1.0	6
29	The economic value of groundwater in Obama. Journal of Hydrology: Regional Studies, 2017, 11, 44-52.	1.0	7
30	Water-Energy-Food Nexus in the Asia-Pacific Region. Journal of Hydrology: Regional Studies, 2017, 11, 1-8.	1.0	40
31	High-resolution mapping and time-series measurements of 222Rn concentrations and biogeochemical properties related to submarine groundwater discharge along the coast of Obama Bay, a semi-enclosed sea in Japan. Progress in Earth and Planetary Science, 2017, 4, .	1.1	20
32	â1. Research trends on the boundary between Hydrology and Fisheries. Nippon Suisan Gakkaishi, 2016, 82, 806-806.	0.0	0
33	Application of A10 Absolute Gravimeter for Monitoring Land Subsidence in Jakarta, Indonesia. International Association of Geodesy Symposia, 2016, , 127-134.	0.2	1
34	Seasonal Changes in Submarine Groundwater Discharge and Associated Nutrient Transport into a Tideless Semi-enclosed Embayment (Obama Bay, Japan). Estuaries and Coasts, 2016, 39, 13-26.	1.0	54
35	The Basic Act on the Water Cycle with groundwater. Journal of Groundwater Hydrology, 2015, 57, 83-90.	0.1	5
36	Methods of the Water-Energy-Food Nexus. Water (Switzerland), 2015, 7, 5806-5830.	1.2	171

3

#	Article	IF	Citations
37	The first repeated absolute gravity measurement for geothermal monitoring in The Kamojang Geothermal Field, Indonesia. Geothermics, 2015, 53, 114-124.	1.5	10
38	Different isotopic evolutionary trends of \hat{l} 34S and \hat{l} 18O compositions of dissolved sulfate in an anaerobic deltaic aquifer system. Applied Geochemistry, 2014, 46, 30-42.	1.4	24
39	Groundwater age rejuvenation caused by excessive urban pumping in Jakarta area, Indonesia. Hydrological Processes, 2013, 27, 2591-2604.	1.1	25
40	Assessment of urban groundwater heat contaminant in Jakarta, Indonesia. Environmental Earth Sciences, 2013, 70, 2033-2038.	1.3	7
41	Ground water and climate change. Nature Climate Change, 2013, 3, 322-329.	8.1	1,513
42	Optimizing the Water-Energy-Food Nexus in the Asia-Pacific Ring of Fire. Eos, 2013, 94, 435-435.	0.1	12
43	Spatial Distribution of Submarine Groundwater Discharge and Associated Nutrients within a Local Coastal Area. Environmental Science & Environmental Sc	4.6	39
44	Towards Sustainable Groundwater Use: Setting Longâ€Term Goals, Backcasting, and Managing Adaptively. Ground Water, 2012, 50, 19-26.	0.7	208
45	Groundwater Dynamics of Fongafale Islet, Funafuti Atoll, Tuvalu. Ground Water, 2012, 50, 639-644.	0.7	32
46	Submarine groundwater discharge in Lýtzow-Holm Bay, Antarctica. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	46
47	What are the Subsurface Environmental Problems?. , 2011, , 3-18.		3
48	Groundwater flow system under a rapidly urbanizing coastal city as determined by hydrogeochemistry. Journal of Asian Earth Sciences, 2011, 40, 226-239.	1.0	25
49	Applications of a field absolute gravimeter for monitoring temporal gravity changes. , 2011, , .		2
50	Multiple isotope (H, O, N, S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area. Journal of Hydrology, 2011, 397, 23-36.	2.3	81
51	Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 2011, 405, 532-560.	2.3	796
52	Hydrogeological constraint on nitrate and arsenic contamination in Asian metropolitan groundwater. Hydrological Processes, 2011, 25, 2742-2754.	1.1	34
53	Submarine groundwater discharge and seawater circulation in a subterranean estuary beneath a tidal flat. Hydrological Processes, 2011, 25, 2755-2763.	1.1	23
54	Mass variation in outcome to high production activity in Kamojang Geothermal Field, Indonesia: A reservoir monitoring with relative and absolute gravimetry. Earth, Planets and Space, 2011, 63, 1157-1167.	0.9	10

#	Article	IF	CITATIONS
55	Detecting Groundwater Inputs into Bangkok Canals Via Radon and Thoron Measurements. , 2011, , 143-158.		2
56	Groundwater sustainability strategies. Nature Geoscience, 2010, 3, 378-379.	5. 4	213
57	Application of multi-isotope ratios to study the source and quality of urban groundwater in Metro Manila, Philippines. Applied Geochemistry, 2010, 25, 900-909.	1.4	42
58	Coupled water and heat studies in subsurface environment. Journal of Groundwater Hydrology, 2010, 52, 371-379.	0.1	1
59	Human impacts on groundwater flow and contamination deduced by multiple isotopes in Seoul City, South Korea. Science of the Total Environment, 2009, 407, 3189-3197.	3.9	36
60	Detecting urbanization effects on surface and subsurface thermal environment — A case study of Osaka. Science of the Total Environment, 2009, 407, 3142-3152.	3.9	97
61	Monitoring groundwater variation by satellite and implications for in-situ gravity measurements. Science of the Total Environment, 2009, 407, 3173-3180.	3.9	14
62	Anthropogenic effects on the subsurface thermal and groundwater environments in Osaka, Japan and Bangkok, Thailand. Science of the Total Environment, 2009, 407, 3153-3164.	3.9	49
63	Effects of human activities and urbanization on groundwater environments: An example from the aquifer system of Tokyo and the surrounding area. Science of the Total Environment, 2009, 407, 3165-3172.	3.9	94
64	Urbanization and subsurface environmental issues: An attempt at DPSIR model application in Asian cities. Science of the Total Environment, 2009, 407, 3089-3104.	3.9	105
65	Urban warming trends in several large Asian cities over the last 100Âyears. Science of the Total Environment, 2009, 407, 3112-3119.	3.9	88
66	The contribution of human activities to subsurface environment degradation in Greater Jakarta Area, Indonesia. Science of the Total Environment, 2009, 407, 3129-3141.	3.9	44
67	Underground sources of nutrient contamination to surface waters in Bangkok, Thailand. Science of the Total Environment, 2009, 407, 3198-3207.	3.9	19
68	Reconstruction of the thermal environment evolution in urban areas from underground temperature distribution. Science of the Total Environment, 2009, 407, 3120-3128.	3.9	43
69	Erratum to "Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities―[Science of the Total Environment 404 (2008) 361–376]. Science of the Total Environment, 2009, 407, 3218.	3.9	4
70	Erratum to "Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities― Science of the Total Environment, 2009, 407, 3219-3231.	3.9	57
71	Erratum to "Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: Examples from Bangkok and Jakarta―[Science of the Total Environment 404 (2008) 401–410]. Science of the Total Environment, 2009, 407, 3208.	3.9	3
72	Erratum to "Integrated research on subsurface environments in Asian urban areas― Science of the Total Environment, 2009, 407, 3076-3088.	3.9	11

#	Article	IF	CITATIONS
73	Spatial variability of submarine groundwater discharge, Ubatuba, Brazil. Estuarine, Coastal and Shelf Science, 2008, 76, 493-500.	0.9	35
74	Direct measurements of submarine groundwater discharge (SGD) over a fractured rock aquifer in Flamengo Bay Brazil. Estuarine, Coastal and Shelf Science, 2008, 76, 466-472.	0.9	38
75	Integrated research on subsurface environments in Asian urban areas. Science of the Total Environment, 2008, 404, 377-392.	3.9	32
76	Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: Examples from Bangkok and Jakarta. Science of the Total Environment, 2008, 404, 401-410.	3.9	55
77	Submarine groundwater discharge from the Yellow River Delta to the Bohai Sea, China. Journal of Geophysical Research, 2008, 113, .	3.3	38
78	Determination of transport rates in the Yellow River–Bohai Sea mixing zone via natural geochemical tracers. Continental Shelf Research, 2008, 28, 2700-2707.	0.9	58
79	Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China. Journal of Geophysical Research, 2008, 113, .	3.3	117
80	Groundwater Discharge as an Important Land-Sea Pathway into Manila Bay, Philippines. Journal of Coastal Research, 2008, 1, 15-24.	0.1	47
81	Groundwater-derived nutrient inputs to the Upper Gulf of Thailand. Continental Shelf Research, 2007, 27, 176-190.	0.9	95
82	Potential Impacts of Climate Change and Human Activity on Subsurface Water Resources. Vadose Zone Journal, 2007, 6, 531-532.	1.3	51
83	Combined Effects of Urbanization and Global Warming on Subsurface Temperature in Four Asian Cities. Vadose Zone Journal, 2007, 6, 591-596.	1.3	114
84	Evaluating Ground Water–Sea Water Interactions via Resistivity and Seepage Meters. Ground Water, 2007, 45, 729-735.	0.7	39
85	Nitrate pollution of groundwater in the Yellow River delta, China. Hydrogeology Journal, 2007, 15, 1605-1614.	0.9	89
86	Evaluations of spatial distribution of submarine groundwater discharge. Geophysical Research Letters, 2006, 33, .	1.5	13
87	Dynamics of submarine groundwater discharge and freshwater-seawater interface. Journal of Geophysical Research, 2006, 111, .	3.3	75
88	Submarine groundwater discharge measured by seepage meters in sicilian coastal waters. Continental Shelf Research, 2006, 26, 835-842.	0.9	49
89	Climate change and groundwater. Journal of Groundwater Hydrology, 2005, 47, 5-17.	0.1	1
90	Evaluation of time-space distributions of submarine ground water discharge. Ground Water, 2005, 43, 336-342.	0.7	48

#	Article	IF	Citations
91	Effects of urbanization and groundwater flow on subsurface temperature in three megacities in Japan. Journal of Geophysics and Engineering, 2005, 2, 320-325.	0.7	34
92	Effects of urbanization and groundwater flow on the subsurface temperature in Osaka, Japan. Physics of the Earth and Planetary Interiors, 2005, 152, 305-313.	0.7	47
93	Evaluations of subsurface flow for reconstructions of climate change using borehole temperature and isotope data in Kamchatka. Physics of the Earth and Planetary Interiors, 2005, 152, 335-342.	0.7	7
94	Use of Temperature Profiles and Stable Isotopes to Trace Flow Lines: Nagaoka Area, Japan. Ground Water, 2004, 42, 83-91.	0.7	26
95	Submarine groundwater discharge in Osaka Bay, Japan. Limnology, 2004, 5, 25-32.	0.8	63
96	Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 2003, 66, 3-33.	1.7	824
97	Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico. Biogeochemistry, 2003, 66, 35-53.	1.7	122
98	Evaluations of groundwater discharge rates from subsurface temperature in Cockburn Sound, Western Australia. Biogeochemistry, 2003, 66, 111-124.	1.7	49
99	Seepage rate variability in Florida Bay driven by Atlantic tidal height. Biogeochemistry, 2003, 66, 187-202.	1.7	43
100	Periodical changes of submarine fluid discharge from a deep seafloor, Suiyo Sea Mountain, Japan. Geophysical Research Letters, 2003, 30, .	1.5	5
101	Shallow subsurface thermal regimes in major plains in Japan with reference to recent surface warming. Physics and Chemistry of the Earth, 2003, 28, 457-466.	1.2	19
102	Transient effects of surface temperature and groundwater flow on subsurface temperature in Kumamoto Plain, Japan. Physics and Chemistry of the Earth, 2003, 28, 477-486.	1.2	53
103	Detection of submarine fresh groundwater discharge and its relation to onshore groundwater flow system. Journal of Groundwater Hydrology, 2003, 45, 133-144.	0.1	5
104	Assessing methodologies for measuring groundwater discharge to the ocean. Eos, 2002, 83, 117.	0.1	105
105	Tidal effects on submarine groundwater discharge into the ocean. Geophysical Research Letters, 2002, 29, 2-1.	1.5	151
106	Estimations of the past groundwater recharge rate from deep borehole temperature data. Catena, 2002, 48, 39-51.	2.2	20
107	Investigation of submarine groundwater discharge. Hydrological Processes, 2002, 16, 2115-2129.	1.1	569
108	Measurement and significance of the direct discharge of groundwater into the coastal zone. Journal of Sea Research, 2001, 46, 109-116.	0.6	250

#	Article	IF	CITATIONS
109	Interaction between Groundwater and Surface Water/Sea Water. Journal of Groundwater Hydrology, 2001, 43, 189-199.	0.1	7
110	A new technique to collect groundwater samples from submarine formations and its application to offshore Kurobe alluvial fan. Journal of Groundwater Hydrology, 2001, 43, 279-287.	0.1	3
111	Interaction between Groundwater and Surface Water/Sea Water. Journal of Groundwater Hydrology, 2001, 43, 343-351.	0.1	O
112	Measurements of submarine groundwater discharge rates by a continuous heat-type automated seepage meter in Osaka Bay, Japan. Journal of Groundwater Hydrology, 2001, 43, 271-277.	0.1	62
113	Evaluation of the groundwater capture zone for modelling of nutrient discharge. Hydrological Processes, 2001, 15, 1939-1949.	1.1	5
114	Stable isotope studies of precipitation and river water in the Lake Biwa basin, Japan. Hydrological Processes, 2000, 14, 539-556.	1.1	37
115	Evaluations of the saltwater-groundwater interface from borehole temperature in a coastal region. Geophysical Research Letters, 2000, 27, 713-716.	1.5	37
116	Session focuses on subsurface thermal studies. Eos, 2000, 81, 546-552.	0.1	1
117	A Critical Review of Global Studies on Groundwater. Scale-up of groundwater studies in time and space Suimon Mizu Shigen Gakkaishi, 2000, 13, 476-485.	0.1	5
118	Groundwater flow and subsurface thermal regime. , 2000, , 485-488.		2
119	Disturbances of temperature-depth profiles due to surface climate change and subsurface water flow: 2. An effect of step increase in surface temperature caused by forest clearing in southwest western Australia. Water Resources Research, 1999, 35, 1519-1529.	1.7	69
120	Effects of Soil Properties on Evaporation and Soil Moisture Movement at a Playa under Arid Conditions. Chirigaku Hyoron, 1999, 72, 215-226.	0.0	1
121	Estimations of surface temperature and subsurface heat flux following forest removal in the south-west of Western Australia. Hydrological Processes, 1998, 12, 2205-2216.	1.1	10
122	Groundwater Flow and Mass/Heat Transports. Journal of Japanese Association of Hydrological Sciences, 1998, 28, 1-12.	0.2	1
123	Subsurface Water Responses to Land Cover/Use Changes: An Overview. , 1997, , 1-20.		6
124	Changes in Surface and Subsurface Temperatures after Clearing Forest in Western Australia. , 1997, , 139-151.		5
125	Subsurface Hydrological Responses to Land Cover and Land Use Changes. , 1997, , .		4
126	An Effect of Seiche on Groundwater Seepage Rate into Lake Biwa, Japan. Water Resources Research, 1996, 32, 333-338.	1.7	36

#	Article	IF	CITATIONS
127	Significance of stemflow in groundwater recharge. 1: Evaluation of the stemflow contribution to recharge using a mass balance approach. Hydrological Processes, 1996, 10, 71-80.	1.1	101
128	Significance of stemflow in groundwater recharge. 2: A cylindrical infiltration model for evaluating the stemflow contribution to groundwater recharge. Hydrological Processes, 1996, 10, 81-88.	1.1	54
129	Significance of stemflow in groundwater recharge. 1: Evaluation of the stemflow contribution to recharge using a mass balance approach., 1996, 10, 71.		4
130	Significance of stemflow in groundwater recharge. 2: A cylindrical infiltration model for evaluating the stemflow contribution to groundwater recharge. Hydrological Processes, 1996, 10, 81-88.	1.1	1
131	Isotope Studies of Precipitation, River Water and Groundwater in the HEIFE Area, Northwestern China. Journal of the Meteorological Society of Japan, 1995, 73, 1293-1299.	0.7	8
132	Analysing the long term reduction in groundwater temperature due to pun pumping. Hydrological Sciences Journal, 1995, 40, 407-421.	1.2	9
133	Estimated Recharge Rates From Groundwater Temperatures In The Nara Basin, Japan. Hydrogeology Journal, 1994, 2, 7-14.	0.9	35
134	Continuous Measurements of Ground-Water Seepage Using an Automatic Seepage Meter. Ground Water, 1993, 31, 675-679.	0.7	143
135	Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resources Research, 1993, 29, 2021-2026.	1.7	146
136	MECHANISM OF GROUNDWATER TEMPERATURE FORMATION IN NAGAOKA PLAIN. Chirigaku Hyoron, 1987, 60, 725-738.	0.0	17
137	Alteration of the groundwater thermal regime caused by advection. Hydrological Sciences Journal, 1985, 30, 343-360.	1.2	13
138	EFFECTS OF SNOW COVER AND INFILTRATED MELTWATER ON SOIL AND GROUNDWATER TEMPERATURE IN AND AROUND NAGAOKA CITY. Chirigaku Hyoron, 1985, 58, 370-384.	0.0	6
139	Asian Groundwater Perspectives on Global Change and Future Earth. , 0, , 179-186.		2