Vladimir Kanovei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1156554/publications.pdf

Version: 2024-02-01

567281 677142 126 856 15 22 citations h-index g-index papers 132 132 132 146 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Proofs and Retributions, Or: Why Sarah Can't Take Limits. Foundations of Science, 2015, 20, 1-25.	0.7	46
2	Undecidable hypotheses in Edward Nelson's internal set theory. Russian Mathematical Surveys, 1991, 46, 1-54.	0.6	33
3	A definable nonstandard model of the reals. Journal of Symbolic Logic, 2004, 69, 159-164.	0.5	30
4	Fermat, Leibniz, Euler, and the Gang: The True History of the Concepts of Limit and Shadow. Notices of the American Mathematical Society, 2014, 61, 848.	0.2	27
5	Internal approach to external sets and universes. Studia Logica, 1995, 55, 229-257.	0.6	21
6	An Ulm-type classification theorem for equivalence relations in Solovay model. Journal of Symbolic Logic, 1997, 62, 1333-1351.	0.5	21
7	Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics. Foundations of Science, 2013, 18, 259-296.	0.7	21
8	On non-wellfounded iterations of the perfect set forcing. Journal of Symbolic Logic, 1999, 64, 551-574.	0.5	19
9	A definable E 0 class containing no definable elements. Archive for Mathematical Logic, 2015, 54, 711-723.	0.3	18
10	Interpreting the Infinitesimal Mathematics of Leibniz and Euler. Journal for General Philosophy of Science, 2017, 48, 195-238.	1.4	18
11	Definable <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="sans-serif">E</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow><td>ub><td>:math></td></td></mml:mrow></mml:msub></mml:math>	ub> <td>:math></td>	:math>
12	A model of second-order arithmetic satisfying AC but not DC. Journal of Mathematical Logic, 2019, 19, 1850013.	0.6	17
13	Non-Glimm–Effros equivalence relations at second projective level. Fundamenta Mathematicae, 1997, 154, 1-35.	0.5	16
14	On some classical problems of descriptive set theory. Russian Mathematical Surveys, 2003, 58, 839-927.	0.6	15
15	altimg="si1.gif" overflow="scroll"> <mml:msubsup><mml:mrow><mml:mi>î</mml:mi></mml:mrow><mml:mrow><mml:mn>2<mml:msubsup><mml:mrow><mml:mi>í</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>0.0</td><td>10</td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msubsup></mml:mn></mml:mrow></mml:msubsup>	0.0	10
16	Annals of Pure and Applied Logic, 2016, 167, 262-283. A Groszek‣aver pair of undistinguishable â€classes. Mathematical Logic Quarterly, 2017, 63, 19-31.	0.2	15
17	Internal approach to external sets and universes. Studia Logica, 1995, 55, 347-376.	0.6	13
18	Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania. Hopos, 2016, 6, 117-147.	0.2	13

#	Article	IF	Citations
19	A countable definable set containing no definable elements. Mathematical Notes, 2017, 102, 338-349.	0.4	12
20	Toward a History of Mathematics Focused on Procedures. Foundations of Science, 2017, 22, 763-783.	0.7	12
21	DEFINABLE MINIMAL COLLAPSE FUNCTIONS AT ARBITRARY PROJECTIVE LEVELS. Journal of Symbolic Logic, 2019, 84, 266-289.	0.5	12
22	Non-uniformizable sets with countable cross-sections on a given level of the projective hierarchy. Fundamenta Mathematicae, 2019, 245, 175-215.	0.5	12
23	When a partial Borel order is linearizable. Fundamenta Mathematicae, 1998, 155, 301-309.	0.5	11
24	Internal approach to external sets and universes. Studia Logica, 1996, 56, 293-322.	0.6	10
25	ON THE NONEMPTINESS OF CLASSES IN AXIOMATIC SET THEORY. Mathematics of the USSR Izvestija, 1978, 12, 507-535.	0.2	9
26	The development of the descriptive theory of sets under the influence of the work of Luzin. Russian Mathematical Surveys, 1985, 40, 135-180.	0.6	9
27	Non-uniformizable sets of second projective level with countable cross-sections in the form of Vitali classes. Izvestiya Mathematics, 2018, 82, 61-90.	0.6	9
28	The correctness of Euler's method for the factorization of the sine function into an infinite product. Russian Mathematical Surveys, 1988, 43, 65-94.	0.6	8
29	Countable OD sets of reals belong to the ground model. Archive for Mathematical Logic, 2018, 57, 285-298.	0.3	8
30	The full basis theorem does not imply analytic wellordering. Annals of Pure and Applied Logic, 2021, 172, 102929.	0.5	8
31	An unpublished theorem of Solovay on OD partitions of reals into two non-OD parts, revisited. Journal of Mathematical Logic, 0, , 2150014.	0.6	8
32	New Radon–Nikodym ideals. Mathematika, 2000, 47, 219-227.	0.5	7
33	On mathematical realism and applicability of hyperreals. Matematychni Studii, 2019, 51, .	0.4	7
34	Kolmogorov's ideas in the theory of operations on sets. Russian Mathematical Surveys, 1988, 43, 111-155.	0.6	6
35	Isomorphism property in nonstandard extensions of theZFC universe. Annals of Pure and Applied Logic, 1997, 88, 1-25.	0.5	6
36	Euler's Lute and Edwards's Oud. Mathematical Intelligencer, 2015, 37, 48-51.	0.2	6

3

#	Article	IF	CITATIONS
37	A Non-Standard Analysis of a Cultural Icon: The Case of Paul Halmos. Logica Universalis, 2016, 10, 393-405.	0.2	6
38	Controversies in the Foundations of Analysis: Comments on Schubring's Conflicts. Foundations of Science, 2017, 22, 125-140.	0.7	6
39	Gregory's Sixth Operation. Foundations of Science, 2018, 23, 133-144.	0.7	6
40	On the Î" n 1 Problem of Harvey Friedman. Mathematics, 2020, 8, 1477.	2.2	6
41	On the â€~Definability of Definable' Problem of Alfred Tarski. Mathematics, 2020, 8, 2214.	2.2	6
42	Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level. Mathematics, 2020, 8, 910.	2.2	6
43	What Makes a Theory of Infinitesimals Useful? A View by Klein and Fraenkel. Journal of Humanistic Mathematics, 2018, 8, 108-119.	0.1	6
44	THE SET OF ALL ANALYTICALLY DEFINABLE SETS OF NATURAL NUMBERS CAN BE DEFINED ANALYTICALLY. Mathematics of the USSR Izvestija, 1980, 15, 469-500.	0.2	5
45	Ulm Classification of Analytic Equivalence Relations in Generic Universes. Mathematical Logic Quarterly, 1998, 44, 287-303.	0.2	5
46	Borel and Countably Determined Reducibility in Nonstandard Domain. Monatshefte Fur Mathematik, 2003, 140, 197-231.	0.9	5
47	On coding uncountable sets by reals. Mathematical Logic Quarterly, 2010, 56, 409-424.	0.2	5
48	Continuity between Cauchy and Bolzano: issues of antecedents and priority. British Journal for the History of Mathematics, 2020, 35, 207-224.	0.2	5
49	Cauchy, infinitesimals and ghosts of departed quantifiers. Matematychni Studii, 2017, 47, .	0.4	5
50	Two dichotomy theorems on colourability of non-analytic graphs. Fundamenta Mathematicae, 1997, 154, 183-201.	0.5	5
51	Cardinality of the set of Vitali equivalence classes. Mathematical Notes, 1991, 49, 370-374.	0.4	4
52	Extending Standard Models of ZFC to Models of Nonstandard Set Theories. Studia Logica, 2000, 64, 37-59.	0.6	4
53	Do stronger definitions of randomness exist?. Theoretical Computer Science, 2003, 290, 1987-1996.	0.9	4
54	Some new results on Borel irreducibility of equivalence relations. Izvestiya Mathematics, 2003, 67, 55-76.	0.6	4

#	Article	IF	Citations
55	Problems of set-theoretic non-standard analysis. Russian Mathematical Surveys, 2007, 62, 45-111.	0.6	4
56	An effective minimal encoding of uncountable sets. Siberian Mathematical Journal, 2011, 52, 854-863.	0.6	4
57	Generalization of one construction by Solovay. Siberian Mathematical Journal, 2015, 56, 1072-1079.	0.6	4
58	Small oscillations of the pendulum, Euler's method, and adequality. Quantum Studies: Mathematics and Foundations, 2016, 3, 231-236.	0.9	4
59	MINIMAL AXIOMATIC FRAMEWORKS FOR DEFINABLE HYPERREALS WITH TRANSFER. Journal of Symbolic Logic, 2018, 83, 385-391.	0.5	4
60	Cauchy's Infinitesimals, His Sum Theorem, and Foundational Paradigms. Foundations of Science, 2018, 23, 267-296.	0.7	4
61	A Model in Which the Separation Principle Holds for a Given Effective Projective Sigma-Class. Axioms, 2022, 11, 122.	1.9	4
62	UNDECIDABLE AND DECIDABLE PROPERTIES OF CONSTITUENTS. Sbornik: Mathematics, 1985, 52, 491-519.	0.2	3
63	The axiom of determinacy and the modern development of descriptive set theory. Journal of Soviet Mathematics, 1988, 40, 257-287.	0.0	3
64	On Baire Measurable Homomorphisms of Quotients of the Additive Group of the Reals. Mathematical Logic Quarterly, 2000, 46, 377-384.	0.2	3
65	A nonstandard set theory in the \$displaystylein\$ -language. Archive for Mathematical Logic, 2000, 39, 403-416.	0.3	3
66	On Borel orderable groups. Topology and Its Applications, 2001, 109, 285-299.	0.4	3
67	An infinity which depends on the axiom of choice. Applied Mathematics and Computation, 2012, 218, 8196-8202.	2.2	3
68	On effective Ïf-boundedness and Ïf-compactness. Mathematical Logic Quarterly, 2013, 59, 147-166.	0.2	3
69	Grossone approach to Hutton and Euler transforms. Applied Mathematics and Computation, 2015, 255, 36-43.	2.2	3
70	A Generic Property of the Solovay Set Σ. Siberian Mathematical Journal, 2017, 58, 1012-1014.	0.6	3
71	Problem of the existence of nonBorel AF?-sets. Mathematical Notes, 1985, 37, 156-161.	0.4	2
72	Loeb Measure from the Point of View of a Coin Flipping Game. Mathematical Logic Quarterly, 1996, 42, 19-26.	0.2	2

#	Article	IF	CITATIONS
73	Topologies generated by effectively Suslin sets, and their applications in descriptive set theory. Russian Mathematical Surveys, 1996, 51, 385-417.	0.6	2
74	Elementary Extensions of External Classes in a Nonstandard Universe. Studia Logica, 1998, 60, 253-273.	0.6	2
75	Linearization of definable order relations. Annals of Pure and Applied Logic, 2000, 102, 69-100.	0.5	2
76	A theorem on ROD-hypersmooth equivalence relations in the Solovay model. Mathematical Logic Quarterly, 2003, 49, 299-304.	0.2	2
77	Some natural equivalence relations in the Solovay model. Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg, 2008, 78, 91-98.	0.2	2
78	On Hausdorff ordered structures. Izvestiya Mathematics, 2009, 73, 939-958.	0.6	2
79	Borel OD sets of reals are OD-Borel in some simple models. Proceedings of the American Mathematical Society, 2018, 147, 1277-1282.	0.8	2
80	On the Equality Relation Modulo a Countable Set. Mathematical Notes, 2020, 108, 615-616.	0.4	2
81	On Effectively Indiscernible Projective Sets and the Leibniz-Mycielski Axiom. Mathematics, 2021, 9, 1670.	2.2	2
82	A Generic Model in Which the Russell-Nontypical Sets Satisfy ZFC Strictly between HOD and the Universe. Mathematics, 2022, 10, 491.	2.2	2
83	On initial segments of degrees of constructibility. Mathematical Notes, 1975, 17, 563-567.	0.4	1
84	Theory of zermelo without power set axiom and the theory of Zermelo-Frenkel without power set axiom are relatively consistent. Mathematical Notes, 1981, 30, 695-702.	0.4	1
85	N. N. Luzin's problems on imbeddability and decomposability of projective sets. Mathematical Notes, 1982, 32, 490-499.	0.4	1
86	Structure of constituents of ? 1 1 -sets. Siberian Mathematical Journal, 1983, 24, 198-215.	0.6	1
87	N. N. Luzin's problems on the existence of CA-sets without perfect subsets. Mathematical Notes, 1987, 41, 422-426.	0.4	1
88	Lebesgue measure and gambling. Sbornik Mathematics, 2008, 199, 1597-1619.	0.6	1
89	Effective compactness and sigma-compactness. Mathematical Notes, 2012, 91, 789-799.	0.4	1
90	On effective σ-boundedness and σ-compactness in Solovay's model. Mathematical Notes, 2015, 98, 273-282	2.0.4	1

#	Article	IF	CITATIONS
91	Is Leibnizian Calculus Embeddable in First Order Logic?. Foundations of Science, 2017, 22, 717-731.	0.7	1
92	Definable Elements of Definable Borel Sets. Mathematical Notes, 2019, 105, 684-693.	0.4	1
93	Definable Hamel bases and \${sf AC}_omega ({mathbb R})\$. Fundamenta Mathematicae, 2021, 253, 239-256.	0.5	1
94	Cauchy's Work on Integral Geometry, Centers of Curvature, and Other Applications of Infinitesimals. Real Analysis Exchange, 2020, 45, 127.	0.1	1
95	Singular cardinals. Mathematical Notes, 1973, 13, 429-433.	0.4	0
96	Proof of a theorem of Lusin. Mathematical Notes, 1978, 23, 35-37.	0.4	0
97	A consequence of the Martin axiom. Mathematical Notes, 1979, 26, 549-553.	0.4	0
98	An answer to Luzin's question about the separability of Ca-curves. Mathematical Notes, 1983, 33, 223-224.	0.4	0
99	Generalization of P.S. Novikov's theorem on cross sections of Borel sets. Mathematical Notes, 1983, 33, 144-146.	0.4	0
100	On the extension principle in internal set theory. Siberian Mathematical Journal, 1992, 33, 999-1010.	0.6	0
101	On external Scott algebras in nonstandard models of Peano arithmetic. Journal of Symbolic Logic, 1996, 61, 586-607.	0.5	0
102	On a Spector Ultrapower for the Solovay Model. Mathematical Logic Quarterly, 1997, 43, 389-395.	0.2	0
103	Special Model Axiom in Nonstandard Set Theory. Mathematical Logic Quarterly, 1999, 45, 371-384.	0.2	0
104	A version of the Jensen-Johnsbråten coding at arbitrary level n ≥ 3. Archive for Mathematical Logic, 2001, 40, 615-628.	0.3	0
105	Perfect subsets of invariant CA-sets. Mathematical Notes, 2005, 77, 307-310.	0.4	0
106	A confinal family of equivalence relations and Borel ideals generating them. Proceedings of the Steklov Institute of Mathematics, 2006, 252, 85-103.	0.3	0
107	Reducibility of monadic equivalence relations. Mathematical Notes, 2007, 81, 757-766.	0.4	0
108	Borel reducibility as an additive property of domains. Journal of Mathematical Sciences, 2009, 158, 708-712.	0.4	0

#	Article	IF	CITATIONS
109	Reasonable non-Radon–Nikodym ideals. Topology and Its Applications, 2009, 156, 911-914. A weak dichotomy below <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>0.4</td><td>O</td></mml:math>	0.4	O
110	altimg="si1.gif" overflow="scroll"> <mml:msub><mml:mi mathvariant="sans-serif">E</mml:mi><mml:mi mathvariant="sans-serif">E</mml:mi><mml:mi mathvariant="sans-serif">E</mml:mi><mml:mi mathvariant="sans-serif">E</mml:mi><mml:mi mathvariant="sans-serif">S</mml:mi></mml:msub> 3. Topology and Its Applications, 2010, 157,	0.4	0
111	1465-1478. Background facts., 0, , 14-44.		O
112	Analytic equivalence relations and models of set theory., 0,, 45-61.		0
113	Classes of equivalence relations. , 0, , 62-79.		0
114	Games and the Silver property. , 0, , 80-99.		0
115	The game ideals. , 0, , 100-146.		0
116	Benchmark equivalence relations. , 0, , 147-186.		0
117	Ramsey-type ideals. , 0, , 187-217.		0
118	Product-type ideals., 0,, 218-243.		0
119	The countable support iteration ideals. , 0, , 244-263.		0
120	Monotone subsequence via ultrapower. Open Mathematics, 2018, 16, 149-153.	1.0	0
121	Absoluteness of the Solovay Set Σ. Siberian Mathematical Journal, 2019, 60, 1003-1006.	0.6	O
122	Factoring Solovay-random extensions, with application to the reduction property. Monatshefte Fur Mathematik, 2021, 194, 105-117.	0.9	0
123	EFFECTIVE CARDINALS IN THE NONSTANDARD UNIVERSE. , 2006, , .		O
124	On countable cofinality and decomposition of definable thin orderings. Fundamenta Mathematicae, 0, , 1-24.	0.5	0
125	Canonization of Smooth Equivalence Relations on Infinite-Dimensional E0-Large Products. Notre Dame Journal of Formal Logic, 2020, 61, .	0.4	0
126	Metric completions, the Heine-Borel property, and approachability. Open Mathematics, 2020, 18, 162-166.	1.0	0