
Pierre Pacaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11564703/publications.pdf Version: 2024-02-01

DIEDDE DACALID

#	Article	IF	CITATIONS
1	Sildenafil-Induced Revascularization of Rat Hindlimb Involves Arteriogenesis through PI3K/AKT and eNOS Activation. International Journal of Molecular Sciences, 2022, 23, 5542.	4.1	3
2	<i>Moringa oleifera</i> Seeds Improve Aging-Related Endothelial Dysfunction in Wistar Rats. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-9.	4.0	8
3	<i>Moringa oleifera</i> Seeds Attenuate Vascular Oxidative and Nitrosative Stresses in Spontaneously Hypertensive Rats. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.	4.0	32
4	Cardiac Protective Effects of <i>Moringa oleifera</i> Seeds in Spontaneous Hypertensive Rats. American Journal of Hypertension, 2016, 29, 873-881.	2.0	50
5	Angiotensin II Activates the RhoA Exchange Factor Arhgef1 in Humans. Hypertension, 2015, 65, 1273-1278.	2.7	26
6	Involvement of Rho GTPases and their regulators in the pathogenesis of hypertension. Small GTPases, 2014, 5, e983866.	1.6	48
7	Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiological Reviews, 2013, 93, 1659-1720.	28.8	104
8	RhoA guanine exchange factor expression profile in arteries: evidence for a Rho kinase-dependent negative feedback in angiotensin II-dependent hypertension. American Journal of Physiology - Cell Physiology, 2012, 302, C1394-C1404.	4.6	30
9	AMPK Alpha 1-Induced RhoA Phosphorylation Mediates Vasoprotective Effect of Estradiol. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2634-2642.	2.4	42
10	The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nature Medicine, 2010, 16, 183-190.	30.7	234
11	RhoA Phosphorylation Induces Rac1 Release from Guanine Dissociation Inhibitor α and Stimulation of Vascular Smooth Muscle Cell Migration. Molecular and Cellular Biology, 2010, 30, 4786-4796.	2.3	35
12	The role of Rho protein signaling in hypertension. Nature Reviews Cardiology, 2010, 7, 637-647.	13.7	142
13	The Rho protein exchange factor Vav3 regulates vascular smooth muscle cell proliferation and migration. Cardiovascular Research, 2010, 86, 131-140.	3.8	39
14	Drug-Eluting Stents in Bifurcations. Circulation: Cardiovascular Interventions, 2010, 3, 120-126.	3.9	68
15	RhoA and Rho Kinase Activation in Human Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 1151-1158.	5.6	165
16	Angiotensin II induces RhoA activation through SHP2-dependent dephosphorylation of the RhoGAP p190A in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2009, 297, C1062-C1070.	4.6	49
17	Structure–activity relationships of urotensin II and URP. Peptides, 2008, 29, 658-673.	2.4	56
18	Urotensin II and atherosclerosis. Peptides, 2008, 29, 778-782.	2.4	33

PIERRE PACAUD

#	Article	IF	CITATIONS
19	Rho exchange factors in the cardiovascular system. Current Opinion in Pharmacology, 2008, 8, 174-180.	3.5	34
20	Ste20-Related Kinase SLK Phosphorylates Ser188 of RhoA to Induce Vasodilation in Response to Angiotensin II Type 2 Receptor Activation. Circulation Research, 2008, 102, 1265-1274.	4.5	79
21	Urotensin II is a New Chemotactic Factor for UT Receptor-Expressing Monocytes. Journal of Immunology, 2007, 179, 901-909.	0.8	70
22	Identification of Differentially Expressed Genes in Human Varicose Veins: Involvement of Matrix Gla Protein in Extracellular Matrix Remodeling. Journal of Vascular Research, 2007, 44, 444-459.	1.4	53
23	Transglutaminase-dependent RhoA Activation and Depletion by Serotonin in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2007, 282, 2918-2928.	3.4	106
24	Direct stenting limits sirolimus-eluting stent edge neointimal thickening. Journal of Vascular Surgery, 2007, 46, 354-359.	1.1	6
25	Structureâ^'Activity Relationships of a Novel Series of Urotensin II Analogues:  Identification of a Urotensin II Antagonist. Journal of Medicinal Chemistry, 2006, 49, 7234-7238.	6.4	30
26	Regulation of Rho Proteins by Phosphorylation in the Cardiovascular System. Trends in Cardiovascular Medicine, 2006, 16, 199-204.	4.9	64
27	Hyaluronan induces vascular smooth muscle cell migration through RHAMM-mediated PI3K-dependent Rac activation. Cardiovascular Research, 2006, 72, 339-348.	3.8	94
28	Rho Kinases in Cardiovascular Physiology and Pathophysiology. Circulation Research, 2006, 98, 322-334.	4.5	484
29	Inhibition of RhoA/Rho kinase pathway is involved in the beneficial effect of sildenafil on pulmonary hypertension. British Journal of Pharmacology, 2005, 146, 1010-1018.	5.4	130
30	RhoA and resistance artery remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1051-H1056.	3.2	24
31	Phosphorylation of Serine 188 Protects RhoA from Ubiquitin/Proteasome-Mediated Degradation in Vascular Smooth Muscle Cells. Circulation Research, 2005, 96, 1152-1160.	4.5	133
32	Stent Implantation Activates RhoA in Human Arteries: Inhibitory Effect of Rapamycin. Journal of Vascular Research, 2005, 42, 21-28.	1.4	22
33	Structure–activity relationships and structural conformation of a novel urotensin II-related peptide. Peptides, 2004, 25, 1819-1830.	2.4	95
34	Rho kinase blockade prevents inflammation via nuclear factor κB inhibition: evidence in Crohn's disease and experimental colitis. Gastroenterology, 2003, 124, 1180-1187.	1.3	179
35	RhoA Expression Is Controlled by Nitric Oxide through cGMP-dependent Protein Kinase Activation. Journal of Biological Chemistry, 2003, 278, 9472-9480.	3.4	159
36	Sildenafil Prevents Change in RhoA Expression Induced by Chronic Hypoxia in Rat Pulmonary Artery. Circulation Research, 2003, 93, 630-637.	4.5	63

PIERRE PACAUD

#	Article	IF	CITATIONS
37	Structure–Activity Relationships of Human Urotensin II and Related Analogues on Rat Aortic Ring Contraction. Journal of Enzyme Inhibition and Medicinal Chemistry, 2003, 18, 77-88.	5.2	76
38	Role of Rho kinase signalling in healthy and varicose human saphenous veins. British Journal of Pharmacology, 2002, 137, 205-212.	5.4	21
39	Rho-kinase inhibitors prevent agonist-induced vasospasm in human internal mammary artery. British Journal of Pharmacology, 2001, 132, 302-308.	5.4	55
40	Extracellular Nucleotides Induce Arterial Smooth Muscle Cell Migration Via Osteopontin. Circulation Research, 2001, 89, 772-778.	4.5	110
41	Human Urotensin II–Induced Contraction and Arterial Smooth Muscle Cell Proliferation Are Mediated by RhoA and Rho-Kinase. Circulation Research, 2001, 88, 1102-1104.	4.5	255
42	P2Y1, P2Y2, P2Y4, and P2Y6 receptors are coupled to Rho and Rho kinase activation in vascular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1751-H1761.	3.2	99
43	Cyclic GMP-dependent Protein Kinase Signaling Pathway Inhibits RhoA-induced Ca2+ Sensitization of Contraction in Vascular Smooth Muscle. Journal of Biological Chemistry, 2000, 275, 21722-21729.	3.4	541
44	The Rho-related protein Rnd1 inhibits Ca2+sensitization of rat smooth muscle. Journal of Physiology, 1999, 516, 825-834.	2.9	60
45	Dependence of P2-nucleotide receptor agonist-mediated endothelium-independent relaxation on ectonucleotidase activity and A2A -receptors in rat portal vein. British Journal of Pharmacology, 1998, 123, 1732-1740.	5.4	18
46	PPADS Inhibits P2Y1Purinoceptors in Rat Brain Capillary Endothelial Cells and in Rat Ileal Myocytes by an Indirect Mechanism. Biochemical and Biophysical Research Communications, 1998, 244, 332-335.	2.1	17
47	Antagonism of α1-adrenoceptor agonist-induced responses by rilmenidine in vascular smooth muscle. European Journal of Pharmacology, 1998, 341, 179-185.	3.5	2
48	P2X ₇ Receptor Activation–Induced Contraction and Lysis in Human Saphenous Vein Smooth Muscle. Circulation Research, 1998, 83, 196-203.	4.5	66
49	Rise in cytosolic Ca ²⁺ concentration induced by P ₂ â€purinoceptor activation in isolated myocytes from the rat gastrointestinal tract. British Journal of Pharmacology, 1996, 117, 775-780.	5.4	15
50	Characterization of the P _{2Y} â€purinoceptor involved in the ATPâ€induced rise in cytosolic Ca ²⁺ concentration in rat ileal myocytes. British Journal of Pharmacology, 1996, 118, 2213-2219.	5.4	21
51	The effect of PPADS as an antagonist of inositol (1,4,5)trisphosphate induced intracellular calcium mobilization. British Journal of Pharmacology, 1996, 119, 360-364.	5.4	26
52	Nucleotide receptor P2u partially mediates ATP-induced cell cycle progression of aortic smooth muscle cells. , 1996, 166, 57-65.		62
53	Mechanism of the ATP-induced rise in cytosolic Ca2+ in freshly isolated smooth muscle cells from human saphenous vein. Pflugers Archiv European Journal of Physiology, 1995, 430, 429-436.	2.8	23
54	Release of Ca ²⁺ from intracellular store in smooth muscle cells of rat portal vein by ATPâ€induced Ca ²⁺ entry. British Journal of Pharmacology, 1994, 113, 457-462.	5.4	23

#	Article	IF	CITATIONS
55	Ca ²⁺ channel activation and membrane depolarization mediated by Cl ^{â^'} channels in response to noradrenaline in vascular myocytes. British Journal of Pharmacology, 1991, 104, 1000-1006.	5.4	83