Wenjuan He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11564159/publications.pdf

Version: 2024-02-01

933447 1372567 3,368 10 10 10 citations h-index g-index papers 11 11 11 5608 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Suppression of Oxidative Stress by \hat{l}^2 -Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor. Science, 2013, 339, 211-214.	12.6	1,264
2	SIRT5 Regulates the Mitochondrial Lysine Succinylome and Metabolic Networks. Cell Metabolism, 2013, 18, 920-933.	16.2	549
3	SIRT5 Regulates both Cytosolic and Mitochondrial Protein Malonylation with Glycolysis as a Major Target. Molecular Cell, 2015, 59, 321-332.	9.7	363
4	Sirt1 activation protects the mouse renal medulla from oxidative injury. Journal of Clinical Investigation, 2010, 120, 1056-1068.	8.2	273
5	The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications. Cell Metabolism, 2018, 27, 497-512.	16.2	241
6	Mitochondrial sirtuins: regulators of protein acylation and metabolism. Trends in Endocrinology and Metabolism, 2012, 23, 467-476.	7.1	231
7	The sirtuins, oxidative stress and aging: an emerging link. Aging, 2013, 5, 144-150.	3.1	209
8	Mitochondrial Protein Acylation and Intermediary Metabolism: Regulation by Sirtuins and Implications for Metabolic Disease. Journal of Biological Chemistry, 2012, 287, 42436-42443.	3.4	187
9	SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease. Nature Communications, 2020, 11, 5927.	12.8	35
10	Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells. Pflugers Archiv European Journal of Physiology, 2014, 466, 357-367.	2.8	16