
Samuel E Root

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11563269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlled Hysteresis of Conductance in Molecular Tunneling Junctions. ACS Nano, 2022, 16, 4206-4216.	14.6	3
2	Rectification in Molecular Tunneling Junctions Based on Alkanethiolates with Bipyridine–Metal Complexes. Journal of the American Chemical Society, 2021, 143, 2156-2163.	13.7	40
3	Characterizing Chelation at Surfaces by Charge Tunneling. Journal of the American Chemical Society, 2021, 143, 5967-5977.	13.7	10
4	Estimating the Density of Thin Polymeric Films Using Magnetic Levitation. ACS Nano, 2021, 15, 15676-15686.	14.6	10
5	Storing and Reading Information in Mixtures of Fluorescent Molecules. ACS Central Science, 2021, 7, 1728-1735.	11.3	29
6	Electropneumotactile Stimulation: Multimodal Haptic Actuators Enabled by a Stretchable Conductive Polymer on Inflatable Pockets. Advanced Materials Technologies, 2020, 5, 1901119.	5.8	13
7	Interfacial Drawing: Roll-to-Roll Coating of Semiconducting Polymer and Barrier Films onto Plastic Foils and Textiles. Chemistry of Materials, 2019, 31, 9078-9086.	6.7	19
8	Ionotactile Stimulation: Nonvolatile Ionic Gels for Human–Machine Interfaces. ACS Omega, 2018, 3, 662-666.	3.5	24
9	Stretchable and Degradable Semiconducting Block Copolymers. Macromolecules, 2018, 51, 5944-5949.	4.8	68
10	Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymers. Polymer Chemistry, 2018, 9, 4354-4363.	3.9	68
11	Measurement of Cohesion and Adhesion of Semiconducting Polymers by Scratch Testing: Effect of Side-Chain Length and Degree of Polymerization. ACS Macro Letters, 2018, 7, 1003-1009.	4.8	14
12	Graphene–Metal Composite Sensors with Near-Zero Temperature Coefficient of Resistance. ACS Omega, 2017, 2, 626-630.	3.5	42
13	Comparison of Methods for Determining the Mechanical Properties of Semiconducting Polymer Films for Stretchable Electronics. ACS Applied Materials & amp; Interfaces, 2017, 9, 8855-8862.	8.0	136
14	Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. Chemical Reviews, 2017, 117, 6467-6499.	47.7	624
15	Measuring the Glass Transition Temperature of Conjugated Polymer Films with Ultraviolet–Visible Spectroscopy. Chemistry of Materials, 2017, 29, 2646-2654.	6.7	90
16	Modelling the morphology and thermomechanical behaviour of low-bandgap conjugated polymers and bulk heterojunction films. Energy and Environmental Science, 2017, 10, 558-569.	30.8	60
17	Metallic nanoislands on graphene: a metamaterial for chemical, mechanical, optical, and biological applications. Nanoscale Horizons, 2017, 2, 311-318.	8.0	24
18	Quantifying the Fracture Behavior of Brittle and Ductile Thin Films of Semiconducting Polymers. Chemistry of Materials, 2017, 29, 10139-10149.	6.7	50

Samuel E Root

#	Article	IF	CITATIONS
19	Poly(3-hexylthiophene) (P3HT): fruit fly or outlier in organic solar cell research?. Journal of Materials Chemistry A, 2017, 5, 11396-11400.	10.3	74
20	Predicting the Mechanical Properties of Organic Semiconductors Using Coarse-Grained Molecular Dynamics Simulations. Macromolecules, 2016, 49, 2886-2894.	4.8	69
21	Metallic Nanoislands on Graphene as Highly Sensitive Transducers of Mechanical, Biological, and Optical Signals. Nano Letters, 2016, 16, 1375-1380.	9.1	66
22	Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants. Energy and Environmental Science, 2015, 8, 55-80.	30.8	205
23	An Expanding Foamâ€Fabric Orthopedic Cast. Advanced Materials Technologies, 0, , 2101563.	5.8	1