
Holly M Brown-Borg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1156320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dwarf mice and the ageing process. Nature, 1996, 384, 33-33.	27.8	955
2	Interventions to Slow Aging in Humans: Are We Ready?. Aging Cell, 2015, 14, 497-510.	6.7	481
3	Life Extension in the Dwarf Mouse. Current Topics in Developmental Biology, 2004, 63, 189-225.	2.2	298
4	Assessment of spatial memory in mice. Life Sciences, 2010, 87, 521-536.	4.3	249
5	Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biology, 2017, 18, 57.	8.8	249
6	Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biology, 2017, 18, 58.	8.8	147
7	Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells. Neuroscience Letters, 2008, 439, 125-128.	2.1	146
8	Antioxidative Mechanisms and Plasma Growth Hormone Levels: Potential Relationship in the Aging Process. Endocrine, 1999, 11, 41-48.	2.2	135
9	Effects of Growth Hormone and Insulin-Like Growth Factor-1 on Hepatocyte Antioxidative Enzymes. Experimental Biology and Medicine, 2002, 227, 94-104.	2.4	108
10	Peroxisome Proliferator-Activated Receptor Coactivator 1 in Caloric Restriction and Other Models of Longevity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 1494-1509.	3.6	93
11	Metallothionein-mediated neuroprotection in genetically engineered mouse models of Parkinson's disease. Molecular Brain Research, 2005, 134, 67-75.	2.3	89
12	Growth hormone administration to long-living dwarf mice alters multiple components of the antioxidative defense system. Mechanisms of Ageing and Development, 2003, 124, 1013-1024.	4.6	82
13	GH and IGF1: Roles in Energy Metabolism of Long-Living GH Mutant Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 652-660.	3.6	82
14	Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse. Mechanisms of Ageing and Development, 2006, 127, 444-450.	4.6	81
15	The potential role of necroptosis in inflammaging and aging. GeroScience, 2019, 41, 795-811.	4.6	81
16	Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Research, 2021, 31, 1244-1262.	12.0	81
17	Assessment of the Primary Adrenal Cortical and Pancreatic Hormone Basal Levels in Relation to Plasma Glucose and Age in the Unstressed Ames Dwarf Mouse. Experimental Biology and Medicine, 1995, 210, 126-133.	2.4	79
18	Hormonal regulation of longevity in mammals. Ageing Research Reviews, 2007, 6, 28-45.	10.9	76

#	Article	IF	CITATIONS
19	Hormonal control of aging in rodents: The somatotropic axis. Molecular and Cellular Endocrinology, 2009, 299, 64-71.	3.2	72
20	Altered methionine metabolism in long living Ames dwarf mice. Experimental Gerontology, 2003, 38, 491-498.	2.8	71
21	Cutting back on the essentials: Can manipulating intake of specific amino acids modulate health and lifespan?. Ageing Research Reviews, 2017, 39, 87-95.	10.9	65
22	Growth hormone alters methionine and glutathione metabolism in Ames dwarf mice. Mechanisms of Ageing and Development, 2005, 126, 389-398.	4.6	63
23	Mitochondrial oxidant generation and oxidative damage in Ames dwarf and CH transgenic mice. Age, 2001, 24, 85-96.	3.0	62
24	Therapeutic Efficacy of Selegiline in Neurodegenerative Disorders and Neurological Diseases. Current Drug Targets, 2006, 7, 1513-1529.	2.1	57
25	Peroxynitrite in the Pathogenesis of Parkinson's Disease and the Neuroprotective Role of Metallothioneins. Methods in Enzymology, 2005, 396, 276-298.	1.0	55
26	Long-living growth hormone receptor knockout mice: Potential mechanisms of altered stress resistance. Experimental Gerontology, 2009, 44, 10-19.	2.8	48
27	Growth hormone signaling is necessary for lifespan extension by dietary methionine. Aging Cell, 2014, 13, 1019-1027.	6.7	47
28	Long-lived Ames dwarf mouse exhibits increased antioxidant defense in skeletal muscle. Mechanisms of Ageing and Development, 2004, 125, 269-281.	4.6	46
29	Expression of oxidative phosphorylation components in mitochondria of long-living Ames dwarf mice. Age, 2012, 34, 43-57.	3.0	44
30	Association between low birth weight and increased adrenocortical function in neonatal pigs. Journal of Animal Science, 1993, 71, 1010-1018.	0.5	40
31	Long-living Ames dwarf mouse hepatocytes readily undergo apoptosis. Experimental Gerontology, 2003, 38, 997-1008.	2.8	39
32	Constitutive Expression of Peroxisome Proliferator-Activated Receptor α-Regulated Genes in Dwarf Mice. Molecular Pharmacology, 2005, 67, 681-694.	2.3	39
33	Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). BMC Genomics, 2010, 11, 16.	2.8	38
34	Expression of DNA Methyltransferases Is Influenced by Growth Hormone in the Long-Living Ames Dwarf Mouse In Vivo and In Vitro. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 923-933.	3.6	38
35	Hippocampus of Ames dwarf mice is resistant to βâ€amyloidâ€induced tau hyperphosphorylation and changes in apoptosisâ€regulatory protein levels. Hippocampus, 2008, 18, 239-244.	1.9	37
36	Impaired cardiac excitation–contraction coupling in ventricular myocytes from Ames dwarf mice with IGF-I deficiency. Growth Hormone and IGF Research, 2002, 12, 99-105.	1.1	34

#	Article	IF	CITATIONS
37	Regulation of phase I and phase II steroid metabolism enzymes by PPARα activators. Toxicology, 2004, 204, 109-121.	4.2	30
38	Altered dietary methionine differentially impacts glutathione and methionine metabolism in long-living growth hormone-deficient Ames dwarf and wild-type mice. Longevity & Healthspan, 2014, 3, 10.	6.7	29
39	Spatial memory is enhanced in long-living Ames dwarf mice and maintained following kainic acid induced neurodegeneration. Mechanisms of Ageing and Development, 2010, 131, 422-435.	4.6	26
40	Increases in insulin-like growth factor-1 level and peroxidative damage after gestational ethanol exposure in rats. Pharmacological Research, 2003, 47, 341-347.	7.1	25
41	Hormonal regulation of aging and life span. Trends in Endocrinology and Metabolism, 2003, 14, 151-153.	7.1	25
42	Growth Hormone Alters the Glutathione S-Transferase and Mitochondrial Thioredoxin Systems in Long-Living Ames Dwarf Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1199-1211.	3.6	22
43	Probing Pedomorphy and Prolonged Lifespan in Naked Mole-Rats and Dwarf Mice. Physiology, 2020, 35, 96-111.	3.1	22
44	The Ames dwarf mutation attenuates Alzheimer's disease phenotype of APP/PS1 mice. Neurobiology of Aging, 2016, 40, 22-40.	3.1	21
45	Growth hormone and aging. Age, 2000, 23, 219-225.	3.0	20
46	PPARÎ \pm activators down-regulate CYP2C7, a retinoic acid and testosterone hydroxylase. Toxicology, 2004, 203, 41-48.	4.2	20
47	Ebselen effects on MPTP-induced neurotoxicity. Brain Research, 2006, 1118, 251-254.	2.2	19
48	Developmental aspects of prolactin receptor gene expression in fetal and neonatal mice. European Journal of Endocrinology, 1996, 134, 751-757.	3.7	18
49	Does Diet Have a Role in the Treatment of Alzheimer's Disease?. Frontiers in Aging Neuroscience, 2020, 12, 617071.	3.4	17
50	Role of Lipoamide Dehydrogenase and Metallothionein on 1-Methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced Neurotoxicity. Neurochemical Research, 2008, 33, 980-984.	3.3	16
51	The First International Mini-Symposium on Methionine Restriction and Lifespan. Frontiers in Genetics, 2014, 5, 122.	2.3	16
52	Far-field recordings of short latency auditory responses in the White Leghorn chick. Hearing Research, 1987, 27, 67-74.	2.0	13
53	Growth Hormone Alters Components of the Glutathione Metabolic Pathway in Ames Dwarf Mice. Annals of the New York Academy of Sciences, 2004, 1019, 317-320.	3.8	13
54	Metabolic adaptation of shortâ€living growth hormone transgenic mice to methionine restriction and supplementation. Annals of the New York Academy of Sciences, 2018, 1418, 118-136.	3.8	13

#	Article	IF	CITATIONS
55	NMDA and kainate receptor expression, long-term potentiation, and neurogenesis in the hippocampus of long-lived Ames dwarf mice. Age, 2012, 34, 609-620.	3.0	12
56	Temporal trends in 6-minute walking distance for older Japanese adults between 1998 and 2017. Journal of Sport and Health Science, 2021, 10, 462-469.	6.5	12
57	Cardiac Cytochrome-c Oxidase Deficiency Occurs During Late Postnatal Development in Progeny of Copper-Deficient Rats. Experimental Biology and Medicine, 2006, 231, 172-180.	2.4	11
58	Effect of MPTP on Dopamine metabolism in Ames dwarf mice. Neurochemical Research, 2002, 27, 457-464.	3.3	10
59	Regulation of Proteome Maintenance Gene Expression by Activators of Peroxisome Proliferator-Activated Receptor α. PPAR Research, 2010, 2010, 1-14.	2.4	10
60	Metabolic adaptations to short-term every-other-day feeding in long-living Ames dwarf mice. Experimental Gerontology, 2013, 48, 905-919.	2.8	10
61	Effects of insulin-like growth factor 1 on glutathione S-transferases and thioredoxin in growth hormone receptor knockout mice. Age, 2014, 36, 9687.	3.0	10
62	Multifactorial Attenuation of the Murine Heat Shock Response With Age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1846-1852.	3.6	10
63	The hippocampus of Ames dwarf mice exhibits enhanced antioxidative defenses following kainic acid-induced oxidative stress. Experimental Gerontology, 2010, 45, 936-949.	2.8	9
64	Reduced growth hormone signaling and methionine restriction: interventions that improve metabolic health and extend life span. Annals of the New York Academy of Sciences, 2016, 1363, 40-49.	3.8	9
65	Effect of dopaminergic neurotoxin MPTP/MPP+ on coenzyme Q content. Life Sciences, 2008, 83, 92-95.	4.3	7
66	Disentangling High Fat, Low Carb, and Healthy Aging. Cell Metabolism, 2017, 26, 458-459.	16.2	6
67	Elevated metallothionein expression in long-lived species mediates the influence of cadmium accumulation on aging. GeroScience, 2021, 43, 1975-1993.	4.6	6
68	Mutations Affecting Mammalian Aging: GH and GHR vs IGF-1 and Insulin. Frontiers in Genetics, 2021, 12, 667355.	2.3	6
69	Dopamine Agonist 3-PPP Fails to Protect Against MPTP-Induced Toxicity. Neurochemical Research, 2004, 29, 379-384.	3.3	4
70	Augmentation of the heat shock axis during exceptional longevity in Ames dwarf mice. GeroScience, 2021, 43, 1921-1934.	4.6	4
71	Prolactin and growth hormone clearance in neonatal boars. Journal of Animal Science, 1993, 71, 2055-2060.	0.5	3

72 Aging and Life Span. , 2005, 567, 259-283.

#	Article	IF	CITATIONS
73	Nutrition in aging and disease: update on biological sciences. Aging Health, 2012, 8, 13-16.	0.3	3
74	Spatial delayed nonmatching-to-sample performances in long-living Ames dwarf mice. Physiology and Behavior, 2014, 123, 100-104.	2.1	3
75	The methyltransferase enzymes KMT2D, SETD1B, and ASH1L are key mediators of both metabolic and epigenetic changes during cellular senescence. Molecular Biology of the Cell, 2022, 33, mbcE20080523.	2.1	3
76	Acquisition of steady-state operant behavior in long-living Ames Dwarf mice. Physiology and Behavior, 2011, 104, 1048-1052.	2.1	2
77	Metabolic adventures in aging research. Molecular and Cellular Endocrinology, 2017, 455, 1-3.	3.2	1
78	Metallothionein levels and multimeric forms in delayed and premature aging mouse models. FASEB Journal, 2006, 20, A1086.	0.5	1
79	Growth hormone, not IGF-1 is the key longevity regulator in mammals. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, , .	3.6	1
80	A summary of the Proceedings of the Tenth International Symposium on the Neurobiology and Neuroendocrinology of Aging Bregenz, Austria, July 25–30, 2010. Experimental Gerontology, 2011, 46, 87-89.	2.8	0
81	A summary of the Proceedings of the Twelfth International Symposium on the Neurobiology and Neuroendocrinology of Aging, Bregenz, Austria July 27–August 1, 2014. Experimental Gerontology, 2015, 68, 1-2.	2.8	Ο
82	A summary of the Proceedings of the Fourteenth International Symposium on the Neurobiology and Neuroendocrinology of Aging, Bregenz, Austria July 15-20, 2018. GeroScience, 2020, 42, 1195-1198.	4.6	0
83	"A Glance Back―at the Journals of Gerontology: We've Come a Long Way, Baby!. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 205-206.	3.6	0
84	Methionine Metabolism in Aging Regulation. Innovation in Aging, 2021, 5, 454-454.	0.1	0