
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11562345/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics, 2006, 8, 3172-3191.	2.8	2,597
2	Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113, 184-215.	1.7	2,561
3	An efficient reformulation of the closedâ€shell coupled cluster single and double excitation (CCSD) equations. Journal of Chemical Physics, 1988, 89, 7382-7387.	3.0	1,519
4	Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?. Journal of Chemical Physics, 1989, 90, 3700-3703.	3.0	1,065
5	On the evaluation of analytic energy derivatives for correlated wave functions. Journal of Chemical Physics, 1984, 81, 5031-5033.	3.0	815
6	Extensive theoretical studies of the hydrogenâ€bonded complexes (H2O)2, (H2O)2H+, (HF)2, (HF)2H+, F2Hâ^', and (NH3)2. Journal of Chemical Physics, 1986, 84, 2279-2289.	3.0	666
7	In pursuit of theab initiolimit for conformational energy prototypes. Journal of Chemical Physics, 1998, 108, 9751-9764.	3.0	659
8	An Introduction to Coupled Cluster Theory for Computational Chemists. Reviews in Computational Chemistry, 2007, , 33-136.	1.5	531
9	P <scp>SI4</scp> 1.4: Open-source software for high-throughput quantum chemistry. Journal of Chemical Physics, 2020, 152, 184108.	3.0	440
10	The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet–triplet splitting of CH2 and other molecular effects. Journal of Chemical Physics, 1986, 84, 4481-4484.	3.0	399
11	Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application. Journal of Chemical Physics, 1987, 87, 5361-5373.	3.0	378
12	The graphical unitary group approach to the electron correlation problem. Methods and preliminary applications. Journal of Chemical Physics, 1979, 70, 5092-5106.	3.0	351
13	Localized and Delocalized 1s Hole States of the O 2 + Molecular Ion. Journal of Chemical Physics, 1972, 56, 224-226.	3.0	323
14	Analytic Raman intensities from molecular electronic wave functions. Journal of Chemical Physics, 1986, 84, 531-532.	3.0	319
15	Toward subchemical accuracy in computational thermochemistry: Focal point analysis of the heat of formation of NCO and [H,N,C,O] isomers. Journal of Chemical Physics, 2004, 120, 11586-11599.	3.0	317
16	Electronic structure of homoleptic transition metal hydrides: TiH4, VH4, CrH4, MnH4, FeH4, CoH4, and NiH4. Journal of Chemical Physics, 1979, 71, 705-712.	3.0	316
17	The closedâ€shell coupled cluster single and double excitation (CCSD) model for the description of electron correlation. A comparison with configuration interaction (CISD) results. Journal of Chemical Physics, 1987, 86, 2881-2890.	3.0	316
18	Systematic study of molecular anions within the selfâ€consistentâ€field approximation: OHâ^', CNâ^', C2Hâ^', NHâ^'2, and CHâ^'3. Journal of Chemical Physics, 1985, 83, 1784-1794.	3.0	312

#	Article	IF	CITATIONS
19	Concerning zeroâ€point vibrational energy corrections to electronic energies. Journal of Chemical Physics, 1991, 95, 5128-5132.	3.0	284
20	Analytic gradients from correlated wave functions via the twoâ€particle density matrix and the unitary group approach. Journal of Chemical Physics, 1980, 72, 4652-4653.	3.0	279
21	Analytic evaluation and basis set dependence of intensities of infrared spectra. Journal of Chemical Physics, 1986, 84, 2262-2278.	3.0	279
22	Anchoring the water dimer potential energy surface with explicitly correlated computations and focal point analyses. Journal of Chemical Physics, 2002, 116, 690-701.	3.0	262
23	Coupling term derivation and general implementation of state-specific multireference coupled cluster theories. Journal of Chemical Physics, 2007, 127, 024102.	3.0	255
24	Homonuclear 3d transition-metal diatomics: A systematic density functional theory study. Journal of Chemical Physics, 2000, 113, 690-700.	3.0	249
25	The analytic configuration interaction gradient method: Application to the cyclic and open isomers of the S3 molecule. Journal of Chemical Physics, 1986, 85, 963-968.	3.0	245
26	Transition structures for the interchange of hydrogen atoms within the water dimer. Journal of Chemical Physics, 1990, 92, 1240-1247.	3.0	230
27	The shapeâ€driven graphical unitary group approach to the electron correlation problem. Application to the ethylene molecule. Journal of Chemical Physics, 1982, 77, 5584-5592.	3.0	222
28	Coupled cluster energy derivatives. Analytic Hessian for the closedâ€shell coupled cluster singles and doubles wave function: Theory and applications. Journal of Chemical Physics, 1990, 92, 4924-4940.	3.0	222
29	The balance between theoretical method and basis set quality: A systematic study of equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities. Journal of Chemical Physics, 1993, 99, 403-416.	3.0	213
30	High-order excitations in state-universal and state-specific multireference coupled cluster theories: Model systems. Journal of Chemical Physics, 2006, 125, 154113.	3.0	207
31	Definitive Ab Initio Studies of Model SN2 Reactions CH3X+F (X=F, Cl, CN, OH, SH, NH2, PH2). Chemistry - A European Journal, 2003, 9, 2173-2192.	3.3	196
32	Gradient techniques for openâ€shell restricted Hartree–Fock and multiconfiguration selfâ€consistentâ€field methods. Journal of Chemical Physics, 1979, 71, 1525-1530.	3.0	195
33	Concerning the applicability of density functional methods to atomic and molecular negative ions. Journal of Chemical Physics, 1996, 105, 862-864.	3.0	194
34	Interfacing Q-Chem and CHARMM to perform QM/MM reaction path calculations. Journal of Computational Chemistry, 2007, 28, 1485-1502.	3.3	190
35	The photodissociation of formaldehyde: Potential energy surface features. Journal of Chemical Physics, 1979, 70, 5117-5134.	3.0	184
36	Potential energy surface for the model unimolecular reaction HNC → HCN. Journal of Chemical Physics, 1975, 62, 350.	3.0	181

#	Article	IF	CITATIONS
37	A systematic theoretical study of harmonic vibrational frequencies: The ammonium ion NH4+and other simple molecules. Journal of Chemical Physics, 1980, 73, 2310-2318.	3.0	181
38	CH+5: The neverâ€ending story or the final word?. Journal of Chemical Physics, 1993, 99, 3716-3720.	3.0	177
39	The protonated water dimer: Extensive theoretical studies of H5O+2. Journal of Chemical Physics, 1994, 101, 4878-4884.	3.0	174
40	Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA-intercalator interactions. Journal of Chemical Physics, 2011, 135, 174107.	3.0	174
41	Generalization of analytic configuration interaction (CI) gradient techniques for potential energy hypersurfaces, including a solution to the coupled perturbed Hartree–Fock equations for multiconfiguration SCF molecular wave functions. Journal of Chemical Physics, 1982, 77, 383-390.	3.0	169
42	Vinylidene: Potential energy surface and unimolecular reaction dynamics. Journal of Chemical Physics, 1984, 80, 4347-4354.	3.0	169
43	Analytic second derivatives in restricted Hartree–Fock theory. A method for highâ€spin openâ€shell molecular wave functions. Journal of Chemical Physics, 1982, 77, 5647-5654.	3.0	167
44	The torsional conformations of butane: Definitive energetics from ab initio methods. Journal of Chemical Physics, 1997, 106, 5143-5150.	3.0	159
45	Molecular Autoionization Lifetimes and Cross Sections for Penning Ionization: Numerical Results for He* (1s2s 3S) + H(1s 2S). Journal of Chemical Physics, 1972, 56, 1347-1358.	3.0	154
46	The weakly exothermic rearrangement of methoxy radical (CH3Oâ‹) to the hydroxymethyl radical (CH2OHâ‹). Journal of Chemical Physics, 1983, 78, 845-853.	3.0	147
47	Theoretical Treatment of Penning Ionization—He(1s2s 1S, 3S) + H(1s 2S). Journal of Chemical Physics, 1970, 53, 1421-1427.	3.0	144
48	Mechanism of the C2H5+O2 reaction. Journal of Chemical Physics, 1997, 107, 141-155.	3.0	142
49	Hartree–Fock orbital instability envelopes in highly correlated single-reference wave functions. Journal of Chemical Physics, 1997, 107, 10626-10632.	3.0	142
50	The malonaldehyde equilibrium geometry: A major structural shift due to the effects of electron correlation. Journal of Chemical Physics, 1985, 82, 4194-4198.	3.0	137
51	Ab Initio Calculations on 62 Low‣ying States of the O2Molecule. Journal of Chemical Physics, 1968, 48, 4946-4955.	3.0	136
52	Potential energy surface for the Li+HF→LiF+H reaction. Journal of Chemical Physics, 1980, 72, 4376-4393.	3.0	135
53	Carbene Rearrangements Unsurpassed:  Details of the C7H6 Potential Energy Surface Revealed. Journal of Organic Chemistry, 1996, 61, 7030-7039.	3.2	133
54	Interaction potential between two rigid HF molecules. Journal of Chemical Physics, 1974, 60, 855-865.	3.0	131

#	Article	IF	CITATIONS
55	An energetically lowâ€lying silacyclopropyne isomer of SiC2. Journal of Chemical Physics, 1984, 80, 3552-3555.	3.0	130
56	The remarkable monobridged structure of Si2H2. Journal of Chemical Physics, 1992, 97, 7990-7998.	3.0	129
5 7	Potential Energy Surface Including Electron Correlation for the Chemical F + H2 → FH + H I. Preliminary Surface. Journal of Chemical Physics, 1972, 56, 4626-4631.	3.0	127
58	Is Mo/ller–Plesset perturbation theory a convergent ab initio method?. Journal of Chemical Physics, 2000, 112, 9213-9222.	3.0	125
59	A theory of selfâ€consistent electron pairs. Computational methods and preliminary applications. Journal of Chemical Physics, 1976, 65, 2740-2750.	3.0	124
60	ls the uniform electron gas limit important for small Ag clusters? Assessment of different density functionals for Agn (n⩼24). Journal of Chemical Physics, 2006, 124, 184102.	3.0	124
61	Triple excitations in state-specific multireference coupled cluster theory: Application of Mk-MRCCSDT and Mk-MRCCSDT-n methods to model systems. Journal of Chemical Physics, 2008, 128, 124104.	3.0	123
62	Ab Initio Potential Curve for the X 3Σgâ^ State of O2. Journal of Chemical Physics, 1971, 54, 2207-2211.	3.0	122
63	The decarboxylation and dehydration reactions of monomeric formic acid. Journal of Chemical Physics, 1992, 96, 1158-1166.	3.0	119
64	Model studies of chemisorption. Interaction between atomic hydrogen and beryllium clusters. Journal of Chemical Physics, 1975, 62, 4815-4825.	3.0	118
65	Electron correlation in small metal clusters. Application of a theory of selfâ€consistent electron pairs to the Be4system. Journal of Chemical Physics, 1976, 65, 5141-5146.	3.0	118
66	Features of the H2CO potential energy hypersurface pertinent to formaldehyde photodissociation. Journal of Chemical Physics, 1981, 75, 3459-3465.	3.0	114
67	Predicting electron affinities with density functional theory: Some positive results for negative ions. Journal of Chemical Physics, 1997, 107, 2529-2541.	3.0	114
68	The Dichotomy of Dimetallocenes:Â Coaxial versus Perpendicular Dimetal Units in Sandwich Compounds. Journal of the American Chemical Society, 2005, 127, 2818-2819.	13.7	113
69	Analytic second derivatives for Renner–Teller potential energy surfaces. Examples of the five distinct cases. Journal of Chemical Physics, 1984, 81, 356-361.	3.0	111
70	The analytic evaluation of energy first derivatives for twoâ€configuration selfâ€consistentâ€field configuration interaction (TCSCFâ€CI) wave functions. Application to ozone and ethylene. Journal of Chemical Physics, 1987, 87, 7062-7075.	3.0	111
71	DNA Nucleosides and Their Radical Anions:Â Molecular Structures and Electron Affinities. Journal of the American Chemical Society, 2004, 126, 4404-4411.	13.7	109
72	The photodissociation of formaldehyde: A coupled cluster study including connected triple excitations of the transition state barrier height for H2CO→H2+CO. Journal of Chemical Physics, 1989, 90, 3629-3636.	3.0	108

#	Article	IF	CITATIONS
73	Multiple dâ€ŧype basis functions for molecules containing second row atoms. Journal of Chemical Physics, 1985, 83, 5721-5726.	3.0	106
74	Metal–Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc. Chemical Reviews, 2018, 118, 11626-11706.	47.7	106
75	Valenceâ€Excited States of Carbon Monoxide. Journal of Chemical Physics, 1970, 53, 3994-4004.	3.0	105
76	A systematic theoretical study of harmonic vibrational frequencies: The single and double excitation coupled cluster (CCSD) method. Journal of Chemical Physics, 1988, 89, 360-366.	3.0	105
77	Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order MÃ,ller-Plesset perturbation theory. Journal of Chemical Physics, 2011, 135, 104103.	3.0	104
78	The protonated water dimer: Brueckner methods remove the spurious C1 symmetry minimum. Journal of Chemical Physics, 1998, 108, 7197-7201.	3.0	102
79	Triplet electronic states of acetylene:cisandtransstructures and energetics. Journal of Chemical Physics, 1978, 69, 1648-1654.	3.0	100
80	Exploring the quantum mechanical/molecular mechanical replica path method: a pathway optimization of the chorismate to prephenate Claisen rearrangement catalyzed by chorismate mutase. Theoretical Chemistry Accounts, 2003, 109, 140-148.	1.4	100
81	Avoided intersection of potential energy surfaces: The (H+ + H2, H + H2+) system. Journal Physics, 1973, 59, 1286-1292.	of Chemi	ical ₉₉
82	Thermochemistry of CHn, SiHn(n=0–4), and the cations SiH+, SiH2+, and SiH3+: A converged quantum mechanical approach. Journal of Chemical Physics, 1992, 97, 8389-8406.	3.0	97
83	Perturbative triples corrections in state-specific multireference coupled cluster theory. Journal of Chemical Physics, 2010, 132, 074107.	3.0	96
84	Theoretical Potential Energy Curves for OH, HF+, HF, HFâ^', NeH+, and NeH. Journal of Chemical Physics, 1972, 57, 1123-1128.	3.0	95
85	Structures and vibrational frequencies in the full configuration interaction limit: Predictions for four electronic states of methylene using a triple-zeta plus double polarization (TZ2P) basis. Journal of Chemical Physics, 1998, 108, 1040-1049.	3.0	93
86	Theoretical Study of SO2 Molecular Properties. Journal of Chemical Physics, 1970, 53, 3014-3019.	3.0	91
87	Electronic Structures and Potential Energy Curves for the Low‣ying States of the CN Radical. Journal of Chemical Physics, 1971, 54, 2573-2580.	3.0	91
88	Geometrical structures and vibrational frequencies of the energetically lowâ€lying isomers of SiC3. Journal of Chemical Physics, 1990, 93, 5046-5052.	3.0	89
89	Hydrogen bonding between the water molecule and the hydroxyl radical (H2Oâ‹HO): The global minimum. Journal of Chemical Physics, 1993, 98, 8829-8834.	3.0	89
90	A systematic theoretical study of the harmonic vibrational frequencies for polyatomic molecules: The single, double, and perturbative triple excitation coupledâ€cluster [CCSD(T)] method. Journal of Chemical Physics, 1993, 98, 1336-1344.	3.0	89

#	Article	IF	CITATIONS
91	Analytic configuration interaction (CI) gradient techniques for potential energy hypersurfaces. A method for openâ€shell molecular wave functions. Journal of Chemical Physics, 1981, 75, 2919-2922.	3.0	88
92	Direct Nearâ€Hartree–Fock Calculations on the 1s Hole States of NO+. Journal of Chemical Physics, 1971, 55, 1474-1475.	3.0	87
93	Analytic energy second derivatives for general MCSCF wave functions. Journal of Chemical Physics, 1984, 80, 2660-2668.	3.0	87
94	Analytic third derivatives for selfâ€consistentâ€field wave functions. Journal of Chemical Physics, 1984, 81, 6395-6396.	3.0	86
95	Electronic Splitting between the 2B1 and 2A1 States of the NH2 Radical. Journal of Chemical Physics, 1971, 55, 4798-4803.	3.0	85
96	C2ï Potential Energy Surfaces for Seven Low‣ying States of CH2. Journal of Chemical Physics, 1971, 55, 162-169.	3.0	84
97	Electronic structure of the N4+molecular ion. Journal of Chemical Physics, 1981, 74, 550-558.	3.0	84
98	Potential energy surfaces related to the ionâ€molecule reaction C+ + H2. Journal of Chemical Physics, 1974, 61, 2507-2513.	3.0	81
99	The silicon analog of benzene–hexasilabenzene (Si6H6). Journal of Chemical Physics, 1986, 84, 1664-1669.	3.0	81
100	Use of 2h and 3hâ^'p-like coupled-cluster Tamm–Dancoff approaches for the equilibrium properties of ozone. Chemical Physics Letters, 2003, 378, 42-46.	2.6	81
101	Interpretation of excited state Hartree–Fock analytic derivative anomalies for NO2 and HCO2 using the molecular orbital Hessian. Journal of Chemical Physics, 1991, 95, 7466-7478.	3.0	80
102	Curve Crossing of theB3Σuâ^' and 3Î u States of O2and Its Relation to Predissociation in the Schumann—Runge Bands. Journal of Chemical Physics, 1971, 55, 4107-4113.	3.0	79
103	Ab initio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces. Journal of Chemical Physics, 1984, 81, 1882-1893.	3.0	79
104	The H+5potential energy hypersurface: Characterization of ten distinct energetically lowâ€lying stationary points. Journal of Chemical Physics, 1987, 86, 5072-5081.	3.0	79
105	The convergence of the cluster model for the study of chemisorption: Be36H. Journal of Chemical Physics, 1983, 78, 1390-1395.	3.0	78
106	Molecular clustering about a positive ion. Structures, energetics, and vibrational frequencies of the protonated hydrogen clusters H+3, H+5, H+7, and H+9. Journal of Chemical Physics, 1983, 78, 4074-4085.	3.0	77
107	Diatomic sulfur: Low lying bound molecular electronic states of S2. Journal of Chemical Physics, 1979, 70, 947.	3.0	76
108	Carbon clusters: The structure of C10 studied with configuration interaction methods. Journal of Chemical Physics, 1990, 93, 8844-8849.	3.0	76

#	Article	IF	CITATIONS
109	The electron affinities of the silicon fluorides SiFn (n=1–5). Journal of Chemical Physics, 1996, 105, 6880-6886.	3.0	76
110	Structures, thermochemistry, and electron affinities of the PFn and PFâ^'n series, n=1–6. Journal of Chemical Physics, 1996, 104, 3676-3683.	3.0	76
111	A critical test of semiempirical FH2 potential energy sufaces: The barrier height for H + FH → HF + H. Journal of Chemical Physics, 1975, 62, 1188-1189.	3.0	74
112	6â€311G is not of valence tripleâ€zeta quality. Journal of Chemical Physics, 1989, 91, 7305-7306.	3.0	74
113	Geometries of the excited electronic states of HCN. Journal of Chemical Physics, 1974, 60, 2787-2793.	3.0	73
114	The structure and stability of BH5. Does correlation make it a stable molecule? Qualitative changes at high levels of theory. Journal of Chemical Physics, 1994, 101, 7625-7632.	3.0	73
115	The barrier to linearity of water. Journal of Chemical Physics, 1999, 110, 11971-11981.	3.0	73
116	Unimolecular thermal fragmentation ofortho-benzyne. Journal of Chemical Physics, 2007, 126, 044312.	3.0	73
117	Large multiconfiguration selfâ€consistentâ€field wave functions for the ozone molecule. Journal of Chemical Physics, 1981, 74, 3411-3414.	3.0	72
118	Theoretical studies of oxygen rings: Cyclotetraoxygen, O4. Journal of Chemical Physics, 1988, 88, 7043-7049.	3.0	71
119	Equilibrium geometry of the HCCN triplet ground state: Carbene or allene? An openâ€shell coupled cluster study including connected triple excitations. Journal of Chemical Physics, 1992, 96, 4449-4452.	3.0	71
120	Molecular structures of the two most stable conformers of free glycine. Journal of Computational Chemistry, 2007, 28, 1373-1383.	3.3	71
121	On the accuracy limits of orbital expansion methods: Explicit effects ofk-functions on atomic and molecular energies. Journal of Chemical Physics, 2003, 118, 8594-8610.	3.0	70
122	Electron Correlation in the Lowest 1Σ+ State of Beryllium Oxide. Journal of Chemical Physics, 1971, 55, 176-181.	3.0	68
123	Generalization of the direct configuration interaction method to the Hartree–Fock interacting space for doublets, quartets, and openâ€shell singlets. Applications to NO2and NO2â". Journal of Chemical Physics, 1979, 71, 426-435.	3.0	68
124	Analytic gradients for the state-specific multireference coupled cluster singles and doubles model. Journal of Chemical Physics, 2009, 131, 064109.	3.0	68
125	Complete basis set limit studies of conventional and R12 correlation methods: The silicon dicarbide (SiC[sub 2]) barrier to linearity. Journal of Chemical Physics, 2003, 118, 7353.	3.0	67

Reaction paths for the dissociation aÌf 3Aâ€~ CH2CO→XÌf 3B1 CH2 + XÌf 1Σ+ CO. Journal of Chemical Physics, 329-344.

#	Article	IF	CITATIONS
127	Thermochemistry of disputed soot formation intermediates C4H3 and C4H5. Journal of Chemical Physics, 2004, 121, 8800-8813.	3.0	66
128	A companion perturbation theory for state-specific multireference coupled cluster methods. Physical Chemistry Chemical Physics, 2009, 11, 4728.	2.8	65
129	Bending Frequency of the C3 Molecule. Journal of Chemical Physics, 1972, 56, 5075-5080.	3.0	64
130	An assessment for the full coupled cluster method including all single, double, and triple excitations: The diatomic molecules LiH, Li2, BH, LiF, C2, BeO, CN+, BF, NO+, and F2. Journal of Chemical Physics, 1990, 92, 568-573.	3.0	64
131	Generalization of analytic energy third derivatives for the RHF closedâ€shell wave function: Derivative energy and integral formalisms and the prediction of vibration–rotation interaction constants. Journal of Chemical Physics, 1986, 85, 5132-5142.	3.0	63
132	Hydrogen bonding between the water molecule and the hydroxyl radical (H2Oâ‹OH): The 2Aâ€~ and 2A' minima. Journal of Chemical Physics, 1991, 94, 2057-2062.	3.0	63
133	Hydrogen bonding between the nitrate anion (conventional and peroxy forms) and the water molecule. Journal of Chemical Physics, 1990, 93, 3379-3388.	3.0	62
134	Symmetry breaking in the NO2 σ radical: Construction of the 2A1 and 2B2 states with Cs symmetry complete active space selfâ€consistentâ€field wave functions. Journal of Chemical Physics, 1990, 93, 8105-8109.	3.0	62
135	The highly anharmonic BH5 potential energy surface characterized in the ab initio limit. Journal of Chemical Physics, 2005, 122, 104302.	3.0	62
136	Firstâ€Order Wavefunctions, Orbital Correlation Energies, and Electron Affinities of Firstâ€Row Atoms. Journal of Chemical Physics, 1969, 51, 4643-4650.	3.0	61
137	Self-consistent-field wave functions, energies, multipole moments, diamagnetic susceptibility and shielding tensors, and electric field gradient tensors for nitrogen dioxide and ozone. Molecular Physics, 1971, 21, 317-327.	1.7	61
138	Infrared intensities of H3O+, H2DO+, HD2O+, and D3O+. Journal of Chemical Physics, 1983, 79, 1551-1552.	3.0	61
139	N(1Ag),T(3B1u), andV(1B1u) states of vertical ethylene. Journal of Chemical Physics, 1978, 68, 4839-4847.	3.0	60
140	A unimolecular reaction ABC→A+B+C involving three product molecules and a single transition state. Photodissociation of glyoxal: HCOHCO→H2+CO+CO. Journal of Chemical Physics, 1981, 75, 5828-5836.	3.0	60
141	Electrophile Affinity: A Reactivity Measure for Aromatic Substitution. Journal of the American Chemical Society, 2009, 131, 14722-14727.	13.7	60
142	On the H+F2→HF+F reaction. An ab initio potential energy surface. Journal of Chemical Physics, 1973, 58, 1126-1131.	3.0	59
143	The anharmonic force fields of HOF and F2O. Journal of Chemical Physics, 1988, 89, 4965-4975.	3.0	59
144	Geometrical structure and vibrational frequencies of several electronic states of Si2C. Journal of Chemical Physics, 1985, 82, 4126-4130.	3.0	58

#	Article	IF	CITATIONS
145	Abinitiostudies of the lowâ€lying electronic states of ketene. Journal of Chemical Physics, 1986, 84, 2212-2225.	3.0	58
146	Is there a transition state for the unimolecular dissociation of cyclotetraoxygen (O4)?. Journal of Chemical Physics, 1992, 96, 1176-1182.	3.0	58
147	Microsolvation effects on the electron capturing ability of thymine: Thymine-water clusters. Journal of Chemical Physics, 2006, 124, 204310.	3.0	58
148	A possible role for triplet H2CN+ isomers in the formation of HCN and HNC in interstellar clouds. Journal of Chemical Physics, 1980, 73, 3255-3263.	3.0	57
149	The classical and nonclassical forms of protonated acetylene, C2H+3. Structures, vibrational frequencies, and infrared intensities from explicitly correlated wave functions. Journal of Chemical Physics, 1986, 85, 3437-3443.	3.0	57
150	The valence isoelectronic molecules CCO, CNN, SiCO, and SiNN in their triplet ground states: Theoretical predictions of structures and infrared spectra. Journal of Chemical Physics, 1988, 89, 3016-3027.	3.0	57
151	Anharmonic force field, vibrational energies, and barrier to inversion of SiH3â^'. Journal of Chemical Physics, 2000, 112, 4053-4063.	3.0	57
152	Is there an absence of threefold symmetry at the equilibrium geometry of the ground electronic state for NO3?. Journal of Chemical Physics, 1989, 91, 4410-4411.	3.0	56
153	The known and unknown group 13 hydride molecules M2H6: Diborane(6), dialane(6), and digallane(6). Journal of Chemical Physics, 1992, 96, 2868-2876.	3.0	56
154	Spectroscopic constants and potential energy surfaces for the possible interstellar molecules A1NC and A1CN. Molecular Physics, 1995, 86, 1331-1337.	1.7	56
155	Multiconfiguration Wavefunctions for the Water Molecule. Journal of Chemical Physics, 1971, 55, 1720-1724.	3.0	55
156	Internal rotation barrier and transition state for glyoxal. Journal of Chemical Physics, 1981, 74, 4576-4580.	3.0	55
157	Is there a potential minimum corresponding to singlet methylnitrene? A study of the CH3N to CH2NH rearrangement on the lowest singlet state potential energy hypersurface. Journal of Chemical Physics, 1994, 100, 481-489.	3.0	55
158	Toward resolution of the silicon dicarbide (SiC2) saga:Ab initioexcursions in the web of polytopism. Journal of Chemical Physics, 1997, 107, 1195-1211.	3.0	55
159	Theab initiolimit quartic force field of BH3. Journal of Computational Chemistry, 2005, 26, 1106-1112.	3.3	54
1(0	The alkaline earth dimer cations (Be ₂ ⁺ , Mg ₂ ⁺ ,) Tj ETQqO	U	
160	Coupled cluster and full configuration interaction studies ^{â€} . Molecular Physics, 2013, 111, 2292-2298.	1.7	54
161	Is the oxywater radical cation more stable than neutral oxywater?. Journal of Chemical Physics, 1996, 104, 7615-7623.	3.0	53
162	The structures, electron affinities, and energetic stabilities of TiOn and TiOnâ^' (n=1–3). Journal of Chemical Physics, 1999, 110, 5224-5230.	3.0	53

#	Article	IF	CITATIONS
163	Binding energies of small lithium clusters (Lin) and hydrogenated lithium clusters (LinH). Journal of Chemical Physics, 2004, 120, 4683-4689.	3.0	53
164	The uncoupled symmetric stretching frequency of H3+. Journal of Chemical Physics, 1978, 68, 3951-3952.	3.0	52
165	The efficient evaluation of configuration interaction analytic energy second derivatives: Application to hydrogen thioperoxide, HSOH. Journal of Chemical Physics, 1986, 85, 3930-3938.	3.0	52
166	Microhydration of cytosine and its radical anion: Cytosineâ^™(H2O)n (n=1–5). Journal of Chemical Physics, 2007, 126, 064301.	3.0	52
167	Symmetric and asymmetric triple excitation corrections for the orbital-optimized coupled-cluster doubles method: Improving upon CCSD(T) and CCSD(T)Λ: Preliminary application. Journal of Chemical Physics, 2012, 136, 204114.	3.0	52
168	Tungsten hexahydride (WH6). An equilibrium geometry far from octahedral. Journal of Chemical Physics, 1993, 98, 508-521.	3.0	51
169	The unimolecular dissociation of H2CO on the lowest triplet potential-energy surface. Journal of Chemical Physics, 1998, 108, 5281-5288.	3.0	51
170	Saddle point geometry and barrier height for H + F2 → HF + F. Journal of Chemical Physics, 1974, 60, 3707-3708.	3.0	50
171	Theoretical Description of Molecular Rydberg States: B 1Σ+ and Lowest 3Σ+ States of BH. Journal of Chemical Physics, 1971, 55, 5235-5241.	3.0	49
172	Tetrahedral Be4. Journal of Chemical Physics, 1976, 64, 905-906.	3.0	49
173	Analytic force constants for postâ€Hartree–Fock wave functions: The simplest case. Journal of Chemical Physics, 1983, 78, 1607-1608.	3.0	49
174	The second-order MÃ,ller–Plesset limit for the barrier to linearity of water. Journal of Chemical Physics, 2001, 114, 2875-2878.	3.0	49
175	Establishment of the C2H5+O2 reaction mechanism: A combustion archetype. Journal of Chemical Physics, 2008, 128, 074308.	3.0	49
176	Sulfur oxide: Lowâ€lying bound molecular electronic states of SO. Journal of Chemical Physics, 1979, 71, 3761-3769.	3.0	48
177	An examination of the 2 1A1 states of formaldehyde and ketene including analytic configuration interaction energy first derivatives for singlet excited electronic states of the same symmetry as the ground state. Journal of Chemical Physics, 1987, 87, 7076-7095.	3.0	48
178	High level ab initio study on the ground state potential energy hypersurface of the HCO+–COH+ system. Journal of Chemical Physics, 1994, 101, 8945-8954.	3.0	48
179	Are Neutralâ€Neutral Reactions Effective for the Carbonâ€Chain Growth of Cyanopolyynes and Polyacetylenes in Interstellar Space?. Astrophysical Journal, 1998, 505, 278-285.	4.5	48
180	Energy separation between the open (C2v) and closed (D3h) forms of ozone. Journal of Chemical Physics, 1977, 67, 848-849.	3.0	47

#	ARTICLE	IF	CITATIONS
181	The radical anions and the electron affinities of perfluorinated benzene, naphthalene and anthraceneElectronic supplementary information (ESI) available: calculated energies and electron affinities for perfluorinated benzene, naphthalene and anthracene and their anions. Calculated structures for perfluorinated naphthalene and anthracene and their anions. See	4.1	47
182	Characterization of the bifurcated structure of the water dimer. Journal of Chemical Physics, 1991, 95, 1825-1828.	3.0	46
183	On apparent quantized transition-state thresholds in the photofragmentation of acetaldehyde. Journal of Chemical Physics, 2000, 112, 5585-5592.	3.0	46
184	Systematic Study of Selected Diagonalization Methods for Configuration Interaction Matrices. Journal of Computational Chemistry, 2001, 22, 1574-1589.	3.3	46
185	Reactions of carbynes. Potential energy surfaces for the doublet and quartet methylidyne (CH) reactions with molecular hydrogen. Journal of Chemical Physics, 1977, 67, 5146-5151.	3.0	45
186	The infrared spectrum of cyclotetraoxygen, O4: A theoretical investigation employing the single and double excitation coupled cluster method. Journal of Chemical Physics, 1990, 92, 6077-6080.	3.0	45
187	Structures, thermochemistry, and electron affinities of the germanium fluorides, GeFn/GeFnâ^'(n=1–5). Journal of Chemical Physics, 1999, 111, 7945-7953.	3.0	45
188	New Approach to Electronic Structure Calculations for Diatomic Molecules: Application to F2and Cl2. Journal of Chemical Physics, 1970, 52, 6241-6247.	3.0	44
189	A multiconfiguration selfâ€consistentâ€field (MCSCF) study of the bent and linear conformations of HCCN. Journal of Chemical Physics, 1987, 86, 7051-7053.	3.0	44
190	Formyl fluoride photodissociation: Potential energy surface features of singlet HFCO. Journal of Chemical Physics, 1990, 93, 4907-4915.	3.0	44
191	Vibrational frequencies of the HF dimer from the coupled cluster method including all single and double excitations plus perturbative connected triple excitations. Journal of Chemical Physics, 1995, 103, 6051-6056.	3.0	44
192	Electron affinities of the oxides of aluminum, silicon, phosphorus, sulfur, and chlorine. Journal of Chemical Physics, 1999, 110, 6240-6245.	3.0	44
193	The reaction of benzene with a ground state carbon atom, C(3Pj). Journal of Chemical Physics, 2000, 113, 4250-4264.	3.0	44
194	Evaluation of two-electron integrals for explicit r12 theories. Journal of Chemical Physics, 2000, 113, 3990-3995.	3.0	44
195	Role of Electron Correlation ina PrioriPredictions of the Electronic Ground State of BeO. Journal of Chemical Physics, 1972, 56, 3938-3942.	3.0	43
196	Carbonyl–water hydrogen bonding: The H2CO–H2O prototype. Journal of Chemical Physics, 1994, 100, 4347-4354.	3.0	43
197	Molecular properties of excited electronic states: Theã3A″andÃ1A″states of formaldehyde. Journal of Chemical Physics, 1974, 61, 3039-3042.	3.0	41
198	Formulation of the direct configuration interaction method for triplet spin states. Applications to glyoxal. Journal of Chemical Physics, 1978, 68, 769-774.	3.0	41

#	Article	IF	CITATIONS
199	The prototype aluminum–carbon single, double, and triple bonds: Al–CH3, Al=CH2, and Al≡CH. Journal of Chemical Physics, 1980, 73, 3246-3254.	3.0	41
200	Molecules for materials: Germanium hydride neutrals and anions. Molecular structures, electron affinities, and thermochemistry of GeHn/GeH nâ^' (n = 0-4) and Ge2Hn/Ge2H nâ^' (n = 0-6). Journal of Computational Chemistry, 2002, 23, 1642-1655.	3.3	41
201	The small planarization barriers for the amino group in the nucleic acid bases. Journal of Chemical Physics, 2006, 124, 044303.	3.0	41
202	Effects of microsolvation on uracil and its radical anion: Uracilâ^™(H2O)n (n=1–5). Journal of Chemical Physics, 2006, 125, 144305.	3.0	41
203	Enthalpy of formation and anharmonic force field of diacetylene. Journal of Chemical Physics, 2009, 130, 044301.	3.0	41
204	Geometric Energy Derivatives at the Complete Basis Set Limit: Application to the Equilibrium Structure and Molecular Force Field of Formaldehyde. Journal of Chemical Theory and Computation, 2018, 14, 1333-1350.	5.3	41
205	Krypton Monofluoride and Its Positive Ion. Journal of Chemical Physics, 1971, 55, 2369-2374.	3.0	40
206	Ab initio SCF and CI studies of three states of NH2. Journal of Chemical Physics, 1977, 67, 5173-5177.	3.0	40
207	Ordering of the O–O stretching vibrational frequencies in ozone. Journal of Chemical Physics, 1989, 90, 5635-5637.	3.0	40
208	Ammonia alane. Journal of Chemical Physics, 1992, 96, 5310-5317.	3.0	40
209	Benchmark configuration interaction spectroscopic constants for X 1Σg+ C2 and X 1Σ+ CN+. Chemical Physics, 1998, 108, 6717-6721.	lournal of	40
210	Odd Carbon Long Linear Chains HC2n+1H (n= 4â^'11): Properties of the Neutrals and Radical Anions. Journal of the American Chemical Society, 2002, 124, 14716-14720.	13.7	40
211	The arsenic clusters Asn (n = 1-5) and their anions: Structures, thermochemistry, and electron affinities. Journal of Computational Chemistry, 2004, 25, 907-920.	3.3	40
212	The infrared spectrum of the acetylene radical cation C2H+2. A theoretical study using SCF, MCSCF, and CI methods. Journal of Chemical Physics, 1987, 86, 3051-3053.	3.0	39
213	Natural orbitals from single and double excitation configuration interaction wave functions: their use in secondâ€order configuration interaction and wave functions incorporating limited triple and quadruple excitations. Journal of Chemical Physics, 1992, 96, 6850-6856.	3.0	39
214	lsomerization reactions on the lowest potential energy hypersurface of triplet vinylidene and triplet acetylene. Journal of Chemical Physics, 1993, 98, 4766-4776.	3.0	39
215	Molecular geometry and vibrational frequencies of ozone from compact variational wave functions explicitly including triple and quadruple substitutions. Journal of Chemical Physics, 1997, 107, 9059-9062.	3.0	39
216	Low-lying electronic states of FeNC and FeCN: A theoretical journey into isomerization and quartet/sextet competition. Journal of Chemical Physics, 2004, 120, 4726-4741.	3.0	39

#	Article	IF	CITATIONS
217	Homonuclear transition-metal trimers. Journal of Chemical Physics, 2005, 123, 074321.	3.0	39
218	Hydroxyl Radical Reactions with Adenine: Reactant Complexes, Transition States, and Product Complexes. Chemistry - A European Journal, 2010, 16, 11848-11858.	3.3	39
219	The Inherent Competition between Addition and Substitution Reactions of Br ₂ with Benzene and Arenes. Angewandte Chemie - International Edition, 2011, 50, 6809-6813.	13.8	39
220	7Σ+ and 7Πstates of manganese hydride. Journal of Chemical Physics, 1973, 58, 1844-1848.	3.0	38
221	A Hartree–Fock interaction potential between a rigid asymmetric top and a spherical atom: (H2CO,He). Journal of Chemical Physics, 1975, 63, 1449-1454.	3.0	38
222	Vibrational frequencies and infrared intensities for H2CN+, protonated HCN. Journal of Chemical Physics, 1984, 80, 2977-2978.	3.0	38
223	Dodecahedral and smaller arsenic clusters: Asn, n=2, 4, 12, 20. Journal of Chemical Physics, 1994, 101, 2261-2266.	3.0	38
224	The electron affinities of the perfluorocarbons C2Fn, n=1–6. Journal of Chemical Physics, 1997, 107, 8536-8544.	3.0	38
225	The infrared spectrum of the nitric oxide dimer cation: Problems for density functional theory and a muddled relationship to experiment. Journal of Chemical Physics, 1999, 111, 2532-2541.	3.0	38
226	Electron attachment induced proton transfer in a DNA nucleoside pair: 2′-deoxyguanosine-2′-deoxycytidine. Journal of Chemical Physics, 2007, 127, 155107.	3.0	38
227	Potential Curves for the Valenceâ€Excited States of Silicon Monoxide. A Theoretical Study. Journal of Chemical Physics, 1972, 56, 958-968.	3.0	37
228	Silaketene: A product of the reaction between silylene and carbon monoxide?. Journal of Chemical Physics, 1989, 90, 1031-1035.	3.0	37
229	Assignment of the infrared spectra of the methanol trimer. Journal of Chemical Physics, 1999, 111, 3027-3034.	3.0	37
230	Excited singlet electronic states of acetylene:cisandtransstructures and energetics. Journal of Chemical Physics, 1980, 73, 5706-5710.	3.0	36
231	The effects of triple and quadruple excitations in configuration interaction procedures for the quantum mechanical prediction of molecular properties. Journal of Chemical Physics, 1988, 89, 408-422.	3.0	36
232	Correlation diagram for He + He → Be. Journal of Chemical Physics, 1974, 61, 4921-4925.	3.0	35
233	Singlet–triplet energy separation for silaethylene. Journal of Chemical Physics, 1978, 68, 2985.	3.0	35
234	Near degenerate rearrangement between the radical cations of formaldehyde and hydroxymethylene. Journal of Chemical Physics, 1981, 74, 617-621.	3.0	35

#	Article	IF	CITATIONS
235	The barrier height, unimolecular rate constant, and lifetime for the dissociation of HN2. Journal of Chemical Physics, 2010, 132, 064308.	3.0	35
236	Simplest halogen atom plus alkali dimer potential surface: F+Li2→LiF+Li. Journal of Chemical Physics, 1973, 58, 5358-5363.	3.0	34
237	Geometry of the LiO2 radical. Journal of Chemical Physics, 1973, 59, 3608-3611.	3.0	34
238	Potential new high energy density materials: Cyclooctaoxygen O8, including comparisons with the wellâ€known cyclo‣8molecule. Journal of Chemical Physics, 1990, 92, 1887-1892.	3.0	34
239	A high level theoretical investigation of the cyclic hydrogen fluoride trimer. Journal of Chemical Physics, 1997, 106, 9627-9633.	3.0	34
240	Relation between electronic structure and the chemiluminescence arising from collisions between alkaline earth atoms and halogen molecules. Molecular Physics, 1973, 26, 941-952.	1.7	33
241	Classical and nonclassical forms of the vinyl cation: A coupled cluster study. Journal of Chemical Physics, 1990, 92, 3653-3658.	3.0	33
242	Quantum mechanical frequencies and matrix assignments to Al2H2. Journal of Chemical Physics, 1997, 107, 119-123.	3.0	33
243	Molecular structure of the methyl anion CHâ^'3. An investigation of the effects of electron correlation using the theory of self-consistent electron pairs (SCEP). Journal of Chemical Physics, 1999, 67, 4071.	3.0	33
244	The germanium clusters Gen(n= 1–6) and their anions: structures, thermochemistry and electron affinities. Molecular Physics, 2004, 102, 579-598.	1.7	33
245	Noncovalent Interactions of a Benzo[a]pyrene Diol Epoxide with DNA Base Pairs: Insight into the Formation of Adducts of (+)-BaP DE-2 with DNA. Journal of Physical Chemistry A, 2010, 114, 2038-2044.	2.5	33
246	The C̃ 2A2 excited state of NO2: Evidence for a Cs equilibrium structure and a failure of some spin-restricted reference wavefunctions. Journal of Chemical Physics, 1997, 107, 2525-2528.	3.0	32
247	Fragmentation path for hydrogen atom dissociation from methoxy radical. Journal of Chemical Physics, 2002, 116, 10229-10237.	3.0	32
248	The electronic spectrum of sâ€ŧetrazine: Structures and vibrational frequencies of the ground and excited electronic states. Journal of Chemical Physics, 1987, 87, 3539-3556.	3.0	31
249	A comparison of two approaches to perturbation triple excitation corrections to the coupled luster singles and doubles method for highâ€spin openâ€shell systems. Journal of Chemical Physics, 1996, 104, 6259-6264.	3.0	31
250	On the energy invariance of openâ€shell perturbation theory with respect to unitary transformations of molecular orbitals. Journal of Chemical Physics, 1996, 105, 1060-1069.	3.0	31
251	Spin-restricted Brueckner orbitals for coupled-cluster wavefunctions. Journal of Chemical Physics, 1997, 107, 9980-9984.	3.0	31
252	The X˜ 1 A 1 , a˜ 3 B 1 , a˜ 1 B˜ 1 , and B˜ 1 A 1 electronic states of SiH 2. Theoretical Chemistry Accou 1997, 97, 341-349.	unts 1.4	31

#	Article	IF	CITATIONS
253	Structure–reactivity relationships for aromatic molecules: electrostatic potentials at nuclei and electrophile affinity indices. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2013, 3, 37-55.	14.6	31
254	Sodium Pentaphosphacyclopentadienide (NaP5) and the Pentaphosphacyclopentadienide Ion (P5?) : Theoretical Predictions of Molecular Structures, Infrared and Raman Spectra. Angewandte Chemie International Edition in English, 1989, 28, 485-486.	4.4	30
255	Toward the observation of silanone (H2SiO) and hydroxysilylene (HSiOH) via microwave spectroscopy. Journal of Chemical Physics, 1994, 101, 2734-2739.	3.0	30
256	Ground and excited state properties of photoactive platinum(iv) diazido complexes: Theoretical considerations. Dalton Transactions, 2011, 40, 7571.	3.3	30
257	In search of the next Holy Grail of polyoxide chemistry: Explicitly correlated <i>ab initio</i> full quartic force fields for HOOH, HOOOH, HOOOOH, and their isotopologues. Journal of Chemical Physics, 2012, 136, 084302.	3.0	30
258	Fluorine peroxide (FOOF): A problem molecule for theoretical structural predictions. Journal of Chemical Physics, 1978, 68, 2507-2508.	3.0	29
259	Communication: Some critical features of the potential energy surface for the Cl + H2O → HCl + OH forward and reverse reactions. Journal of Chemical Physics, 2013, 139, 041101.	3.0	29
260	Some Features of the CH3NC→CH3CN Potential Surface. Journal of Chemical Physics, 1972, 57, 4509-4511.	3.0	28
261	The acetyl cation and its geometrical isomers. Journal of Chemical Physics, 1975, 63, 4317-4328.	3.0	28
262	A multiconfiguration selfâ€consistentâ€field formalism utilizing the twoâ€particle density matrix and the unitary group approach. Journal of Chemical Physics, 1980, 72, 3837-3838.	3.0	28
263	Mechanism of the H+O3 reaction. Journal of Chemical Physics, 1981, 74, 2938-2944.	3.0	28
264	Vibrational frequencies for the classical and nonclassical forms of protonated acetylene–C2H+3. Journal of Chemical Physics, 1984, 81, 4034-4037.	3.0	28
265	Nitrogen quadrupole coupling constants for HCN and H2CN+: Explanation of the absence of fine structure in the microwave spectrum of interstellar H2CN+. Journal of Chemical Physics, 1986, 84, 5711-5714.	3.0	28
266	Acetylene: Synergy between theory and experiment. Journal of Chemical Physics, 1993, 98, 8384-8391.	3.0	28
267	The Ã 1Au state and the T2 potential surface of acetylene: Implications for triplet perturbations in the fluorescence spectra of the à state. Journal of Chemical Physics, 1996, 104, 8507-8515.	3.0	28
268	The lowest-lying electronic singlet and triplet potential energy surfaces for the HNO–NOH system: Energetics, unimolecular rate constants, tunneling and kinetic isotope effects for the isomerization and dissociation reactions. Journal of Chemical Physics, 2012, 136, 164303.	3.0	28
269	Orbital-optimized density cumulant functional theory. Journal of Chemical Physics, 2013, 139, 204110.	3.0	28
270	The gas phase structure of transition metal dihydrides. Journal of Chemical Physics, 1980, 72, 311-315.	3.0	27

#	Article	IF	CITATIONS
271	Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: A comparison with configuration interaction (CCSD,CISDT, andCISDTQ) results for the harmonic vibrational frequencies, infrared intensities, dipole moment, and inversion barrier of ammonia. International Journal of Quantum Chemistry, 1987, 32, 495-501.	2.0	27
272	The weakly bound dinitrogen tetroxide molecule: High level single reference wavefunctions are good enough. Journal of Chemical Physics, 1997, 106, 7178-7184.	3.0	27
273	A new spin-restricted triple excitation correction for coupled cluster theory. Journal of Chemical Physics, 1997, 107, 7943-7950.	3.0	27
274	A theoretical approach to the single-source precursor concept: quantum chemical modeling of gas-phase reactions. Journal of Crystal Growth, 2001, 222, 170-182.	1.5	27
275	Three- versus four-coordinate phosphorus in the gas phase and inâ€9 for phosphine oxide and phosphinous acid. Journal of Chemical Physics, 2002, 116, 112.	‰solution:	Treacherous
276	The thymine radicals and their respective anions: molecular structures and electron affinities. Molecular Physics, 2003, 101, 3277-3284.	1.7	27
277	Bis(cycloheptatrienyl) Derivatives of the First-Row Transition Metals: Variable Hapticity of the Cycloheptatrienyl Ring. European Journal of Inorganic Chemistry, 2008, 2008, 3698-3708.	2.0	27
278	Analytic configuration interaction gradient studies of SH4, sulfurane. Journal of Chemical Physics, 1981, 74, 1855-1863.	3.0	26
279	Naked organosulfur clusters: The infrared spectrum of the C2S molecule. Journal of Chemical Physics, 1992, 96, 3714-3717.	3.0	26
280	Spectroscopic constants and potential energy surfaces for silanone (H2SiO), hydroxysilylene (HSiOH), the hydroxysilylene dimer, and the disilynyl radical (Si2H). Journal of Chemical Physics, 1996, 105, 5731-5736.	3.0	26
281	The ClO4 radical: Experiment versus theory. Journal of Chemical Physics, 1997, 106, 4028-4037.	3.0	26
282	Subtle basis set effects on hydrogen bonded systems. Molecular Physics, 1999, 96, 493-504.	1.7	26
283	Isomerization of the interstellar molecule silicon cyanide to silicon isocyanide through two transition states. Journal of Chemical Physics, 2003, 119, 12946-12955.	3.0	26
284	Unsaturated Binuclear Cyclopentadienylmanganese Carbonyl Derivatives Related to Cymantrene. Organometallics, 2008, 27, 61-66.	2.3	26
285	Density cumulant functional theory: First implementation and benchmark results for the DCFT-06 model. Journal of Chemical Physics, 2010, 133, 174122.	3.0	26
286	The ethyl radical in superfluid helium nanodroplets: Rovibrational spectroscopy and <i>ab initio</i> computations. Journal of Chemical Physics, 2013, 138, 194303.	3.0	26
287	Multiconfiguration selfâ€consistentâ€field study of the importance of triply and quadruply excited electronic configurations in the water molecule. Journal of Chemical Physics, 1980, 73, 1765-1769.	3.0	25
288	A contribution to the understanding of the structure of xenon hexafluoride. Journal of Chemical Physics, 1995, 102, 3307-3311.	3.0	25

#	Article	IF	CITATIONS
289	Analyses of the ScOâ^' and ScO2â^' photoelectron spectra. Journal of Chemical Physics, 2000, 113, 567-572.	3.0	25
290	From ?Parasitic? Association Reactions toward the Stoichiometry Controlled Gas Phase Synthesis of Nanoparticles: A Theoretically Driven Challenge for Experimentalists. Chemical Record, 2002, 2, 319-338.	5.8	25
291	Seven isomers of protonated nitrosyl fluoride. Journal of Chemical Physics, 1990, 93, 1215-1220.	3.0	24
292	Structure and energetics of the lowest 1A1 and 1B1 states of dichlorocarbene. Journal of Chemical Physics, 1991, 94, 2063-2067.	3.0	24
293	Investigation of XNO and XON (where X=Cl or Br) and their protonated isomers. Journal of Chemical Physics, 1992, 96, 480-488.	3.0	24
294	The X̃ AlOH–X̃ HAlO isomerization potential energy hypersurface. Journal of Chemical Physics, 1993, 98, 8704-8709.	3.0	24
295	The hydroperoxyl radical dimer: Triplet ring or singlet string?. Journal of Chemical Physics, 1997, 106, 5102-5108.	3.0	24
296	Coupled-cluster characterization of the ground and excited states of the CH2N and CH2P radicals. Journal of Chemical Physics, 2001, 114, 3055-3064.	3.0	24
297	Understanding Electron Attachment to the DNA Double Helix:  The Thymidine Monophosphateâ^'Adenine Pair in the Gas Phase and Aqueous Solution. Journal of Physical Chemistry B, 2006, 110, 19696-19703.	2.6	24
298	The silaformyl radical HSiO and its energetically lower″ying isomer SiOH. Journal of Chemical Physics, 1985, 82, 4585-4587.	3.0	23
299	The dissociation mechanism of triplet formaldehyde. Journal of Chemical Physics, 1990, 93, 8798-8807.	3.0	23
300	What is the lowest energy structure of the NS2molecule?. Journal of Chemical Physics, 1990, 92, 3683-3687.	3.0	23
301	The infrared spectrum of difluorovinylidene, F2C=C:. Journal of Chemical Physics, 1990, 93, 865-866.	3.0	23
302	The silicon–carbon symmetric stretching fundamental ν1 of Si2C: Nonintuitive theoretical behavior. Journal of Chemical Physics, 1992, 97, 5586-5591.	3.0	23
303	Sulfur clusters: structure, infrared, and Raman spectra of cyclo-S6and comparison with the hypothetical cyclo-O6molecule. Molecular Physics, 1992, 76, 537-546.	1.7	23
304	Structural isomerization of cyclopropane: a new mechanism through propylidene. Chemical Communications, 1999, , 1515-1516.	4.1	23
305	The global minimum structure of SiC3: The controversy continues. Journal of Chemical Physics, 2002, 116, 9151-9153.	3.0	23
306	The rule breaking Cr2(CO)10. A 17 electron Cr system or a Crr double bond?. Faraday Discussions, 2003, 124, 315-329.	3.2	23

#	Article	IF	CITATIONS
307	Electron affinities of the radicals derived from cytosine. Physical Chemistry Chemical Physics, 2005, 7, 861.	2.8	23
308	Exploring mechanisms of a tropospheric archetype: CH3O2 + NO. Journal of Chemical Physics, 2015, 143, 234302.	3.0	23
309	usepackage{amstonts} usepackage{amssymb} usepackage{bm} usepackage{mathrsfs} usepackage{pifont} usepackage{stmaryrd} usepackage{textcomp} usepackage{portland,xspace} usepackage{amsmath,amsxtra} usepackage[OT2,OT1]{fontenc} ewcommandcyr{ enewcommandmdefault{wncyr} enewcommandsfdefault{wncyss}	4.5	23
310	The HO+2 molecular ion. Geometrical structure and vibrational frequencies. Journal of Chemical Physics, 1984, 80, 319-324.	3.0	22
311	The open chain or chemically bonded structure of H2O4: The hydroperoxyl radical dimer. Journal of Chemical Physics, 1985, 83, 6275-6282.	3.0	22
312	The equilibrium geometry of F ₂ ⁺ in its ground electronic state. A simple example of the effects of symmetry breaking on an observable molecular property. International Reviews in Physical Chemistry, 1986, 5, 229-237.	2.3	22
313	The AÌ f 1Aâ€ $^{\sim}$ state of isocyanogen (CNCN). Journal of Chemical Physics, 1994, 100, 8920-8924.	3.0	22
314	Comparative energy derivative analyses of the HBO–BOH and AlOH–HAlO potential energy hypersurfaces. Journal of Chemical Physics, 1994, 101, 3006-3017.	3.0	22
315	The structures, energies, vibrational, and rotational frequencies, and dissociation energy of GeH+5. Journal of Chemical Physics, 1994, 101, 2141-2147.	3.0	22
316	Fragmentation surface of triplet ketene. Faraday Discussions, 1998, 110, 23-50.	3.2	22
317	3Σâ^ and 3Î states of GeC and GeSi: The problematic dissociation energy of GeC. Journal of Chemical Physics, 2003, 119, 8266-8275.	3.0	22
318	Quantification of Aromaticity of Heterocyclic Systems Using Interaction Coordinates. Journal of Physical Chemistry A, 2018, 122, 6953-6960.	2.5	22
319	Electron correlation effects on the excitation energies of the lowest triplet states of glyoxal. Journal of Chemical Physics, 1977, 67, 2422.	3.0	21
320	Correlated wavefunctions for the water molecule. Journal of Chemical Physics, 1978, 68, 5292-5294.	3.0	21
321	Molecular structures and energetics for the lowest triplet states of glyoxal. Journal of Chemical Physics, 1985, 83, 1741-1745.	3.0	21
322	Analytic energy derivative methods for excited singlet states of the same symmetry as the electronic ground state. Journal of Chemical Physics, 1985, 83, 1162-1167.	3.0	21
323	The ring and superoxide isomers of SO2. Journal of Chemical Physics, 1995, 102, 4177-4183.	3.0	21
324	Electron attachment to PCl3 and POCl3, 296–552 K. Journal of Chemical Physics, 1998, 109, 578-584.	3.0	21

#	Article	IF	CITATIONS
325	The SF6â^' enigma for density functional theory: is the KMLYP functional a reasonable solution for this problematic anion?. Chemical Physics Letters, 2003, 381, 123-128.	2.6	21
326	Ionization potentials of small lithium clusters (Lin) and hydrogenated lithium clusters (LinH). Journal of Chemical Physics, 2005, 122, 204328.	3.0	21
327	Periodane: A wealth of structural possibilities revealed by the Kick procedure. International Journal of Quantum Chemistry, 2007, 107, 2220-2223.	2.0	21
328	Are isomers of the vinyl cyanide ion missing links for interstellar pyrimidine formation?. Journal of Chemical Physics, 2009, 131, 074303.	3.0	21
329	The cyclic, twoâ€hydrogen bond form of the HO2 dimer. Journal of Chemical Physics, 1984, 81, 362-367.	3.0	20
330	Electronic symmetry breaking in polyatomic molecules. Multiconfiguration selfâ€consistent field study of the cyclopropenyl radical C3H3. Journal of Chemical Physics, 1984, 80, 338-343.	3.0	20
331	Peroxy and cyclic isomers of NO2 and NOâ [~] 2. Journal of Chemical Physics, 1991, 94, 1317-1326.	3.0	20
332	An ab initio study on the ground state HBO–BOH system. Journal of Chemical Physics, 1995, 102, 1280-1287.	3.0	20
333	Aluminum monocarbonyl and aluminum isocarbonyl. Journal of Chemical Physics, 1996, 104, 3672-3675.	3.0	20
334	Scratching the surface of the water dication. Journal of Chemical Physics, 1999, 110, 11856-11864.	3.0	20
335	Remarkable electron accepting properties of the simplest benzenoid cyanocarbons: hexacyanobenzene, octacyanonaphthalene and decacyanoanthracene. Chemical Communications, 2006, , 758.	4.1	20
336	The Beryllium tetramer: Profiling an elusive molecule. Journal of Chemical Physics, 2011, 134, 074110.	3.0	20
337	Magnetic Hyperfine Structure of NO2. Journal of Chemical Physics, 1971, 54, 1423-1424.	3.0	19
338	The nuclear quadrupole moment of 14N. A theoretical prediction from full valence shell and full configuration interaction atomic wave functions. Journal of Chemical Physics, 1987, 87, 4020-4024.	3.0	19
339	Vertical electronic spectrum of NO3: 2A'2, 2Eâ€~(2A2,2B1), and 2E' states. Journal of Chemical Physics, 1988, 88, 3204-3210.	3.0	19
340	Benchmark studies of electron correlation in sixâ€electron systems. Journal of Chemical Physics, 1994, 100, 8132-8139.	3.0	19
341	The ethylenedione anion: Elucidation of the intricate potential energy hypersurface. Journal of Chemical Physics, 1995, 102, 6525-6536.	3.0	19
342	The 3A2, 1A2, 3B2, and 1B2 electronic states of CH2: Small bond angle states. Journal of Chemical Physics, 1997, 106, 1819-1826.	3.0	19

#	Article	IF	CITATIONS
343	The barrier height for decomposition of HN2. Journal of Chemical Physics, 1998, 108, 8029-8030.	3.0	19
344	An L-shaped equilibrium geometry for germanium dicarbide (GeC2)? Interesting effects of zero-point vibration, scalar relativity, and core–valence correlation. Journal of Chemical Physics, 2002, 117, 10008-10018.	3.0	19
345	Characterization of the three lowest-lying singlet electronic states of AlOH. Journal of Chemical Physics, 2003, 119, 12830-12841.	3.0	19
346	Energetics of the low-lying isomers of HCCO. Chemical Physics Letters, 2004, 383, 266-269.	2.6	19
347	In search of definitive signatures of the elusive NCCO radical. Journal of Chemical Physics, 2007, 127, 014306.	3.0	19
348	Infrared laser spectroscopy of the <i>n</i> -propyl and <i>i</i> -propyl radicals: Stretch-bend Fermi coupling in the alkyl CH stretch region. Journal of Chemical Physics, 2016, 145, 224304.	3.0	19
349	Walsh's Rules and the Small Bond Angle States of Triatomic Dihydride Molecules. Israel Journal of Chemistry, 1980, 19, 127-131.	2.3	18
350	Protonated disilyne, Si2H+3: Molecular structures, vibrational frequencies, and infrared intensities. Journal of Chemical Physics, 1990, 93, 7230-7242.	3.0	18
351	Simple mixed hydrides of boron, aluminum, and gallium: AlBH6, AlGaH6, and BGaH6. Journal of Chemical Physics, 1991, 95, 1160-1167.	3.0	18
352	Structure, Spectra, and Reaction Energies of the Aluminumâ^'Nitrogen (HAlâ^'NH)2and (H2Alâ^'NH2)2Rings and the (HAlâ^'NH)4Cluster. Inorganic Chemistry, 1998, 37, 2291-2295.	4.0	18
353	Electron affinities of the bromine oxides BrOn,n= 1-4. Molecular Physics, 2000, 98, 879-890.	1.7	18
354	Analytic gradients for density cumulant functional theory: The DCFT-06 model. Journal of Chemical Physics, 2012, 137, 054105.	3.0	18
355	Addition–Elimination versus Direct Substitution Mechanisms for Arene Chlorination. European Journal of Organic Chemistry, 2014, 2014, 6918-6924.	2.4	18
356	High-level theoretical characterization of the vinoxy radical (•CH2CHO) + O2 reaction. Journal of Chemical Physics, 2018, 148, 184308.	3.0	18
357	Formation of Formic Acid Derivatives through Activation and Hydroboration of CO ₂ by Low-Valent Group 14 (Si, Ge, Sn, Pb) Catalysts. Journal of Physical Chemistry A, 2020, 124, 1121-1133.	2.5	18
358	A model transition metal-carbene system MnCH2. Molecular Physics, 1977, 34, 193-213.	1.7	17
359	Variational studies of the importance of triple and quadruple excitations on the barrier height for F+H2→FH+H. Journal of Chemical Physics, 1988, 88, 7024-7026.	3.0	17
360	Use of canonical orbital energy derivatives for closedâ€shell selfâ€consistentâ€field wave functions. Journal of Chemical Physics, 1993, 98, 8749-8760.	3.0	17

#	Article	IF	CITATIONS
361	Excited electronic states of carbon disulphide. Molecular Physics, 1999, 96, 693-704.	1.7	17
362	The silaketenylidene (SiCO) molecule: Characterization of the X̃ 3Σâ^' and Ã 3Î states. Journal of Chemic Physics, 2000, 112, 3201-3207.	al 3.0	17
363	The puzzling infrared spectra of the nitric oxide dimer radical cation: a systematic application of Brueckner methods. Molecular Physics, 2000, 98, 955-959.	1.7	17
364	Density cumulant functional theory: The DC-12 method, an improved description of the one-particle density matrix. Journal of Chemical Physics, 2013, 138, 024107.	3.0	17
365	The fate of the tert-butyl radical in low-temperature autoignition reactions. Journal of Chemical Physics, 2017, 146, 194304.	3.0	17
366	Nucleophilic Influences and Origin of the S N 2 Allylic Effect. Chemistry - A European Journal, 2018, 24, 11637-11648.	3.3	17
367	Where to look for the electronic spectrum of hydrogen isocyanide, HNC. Journal of Chemical Physics, 1984, 80, 3069-3072.	3.0	16
368	Radiative decay lifetimes of CHâ^'2. Journal of Chemical Physics, 1987, 86, 3807-3815.	3.0	16
369	The SiOH+–HSiO+ system: A high level ab initio quantum mechanical study. Journal of Chemical Physics, 1995, 102, 5327-5334.	3.0	16
370	The GaOH–HGaO potential energy hypersurface and the necessity of correlating the 3d electrons. Journal of Chemical Physics, 1996, 104, 8516-8523.	3.0	16
371	Isomerization pathway of the aluminum monocarbonyl/isocarbonyl pair, AlCO/AlOC: Evidence of a cyclic minimum. Journal of Chemical Physics, 1998, 108, 9398-9403.	3.0	16
372	Triplet states of cyclopropenylidene and its isomers. Journal of Chemical Physics, 2010, 132, 044308.	3.0	16
373	Ethyl + O ₂ in Helium Nanodroplets: Infrared Spectroscopy of the Ethylperoxy Radical. Journal of Physical Chemistry A, 2019, 123, 3558-3568.	2.5	16
374	Arbitrary-Order Derivatives of Quantum Chemical Methods via Automatic Differentiation. Journal of Physical Chemistry Letters, 2021, 12, 3232-3239.	4.6	16
375	Selfâ€consistentâ€field wavefunctions using a symmetryâ€restricted annihilation of singleâ€excitations procedure. Journal of Chemical Physics, 1976, 64, 981-986.	3.0	15
376	The infrared spectrum of silaethylene. Journal of Chemical Physics, 1986, 85, 4563-4566.	3.0	15
377	Natriumpentaphosphacyclopentadienid NaP ₅ und das Pentaphosphacyclopentadienidâ€Ion P: Theoretische Studien zu MolekÃ1⁄4lstruktur, IR―und Ramanâ€Spektren. Angewandte Chemie, 1989, 101, 500-501.	2.0	15
378	The silaformyl radical HSiO and its SiOH isomer. Journal of Chemical Physics, 1990, 93, 1196-1199.	3.0	15

#	Article	IF	CITATIONS
379	The infrared spectrum of trimethylenemethane. Predictions of inâ€plane vibrational frequencies from correlated wave functions. Journal of Chemical Physics, 1990, 92, 1174-1179.	3.0	15
380	First and second energy derivative analyses of the vinylidene and acetylene triplet state potential energy hypersurfaces. Journal of Chemical Physics, 1994, 100, 4969-4980.	3.0	15
381	Can AlH5 exist?. Journal of Chemical Physics, 1995, 103, 5565-5569.	3.0	15
382	Brillouin–Wigner coupled cluster theory. Fock-space approach. Journal of Chemical Physics, 2002, 117, 9580-9587.	3.0	15
383	The 2â€~-Deoxyadenosine-5â€~-phosphate Anion, the Analogous Radical, and the Different Hydrogen-Abstracted Radical Anions:Â Molecular Structures and Effects on DNA Damage. Journal of Physical Chemistry B, 2005, 109, 22053-22060.	2.6	15
384	Spin–Orbit Coupling via Four-Component Multireference Methods: Benchmarking on p-Block Elements and Tentative Recommendations. Journal of Chemical Theory and Computation, 2018, 14, 1235-1246.	5.3	15
385	The low-lying electronic states of nickel cyanide and isocyanide: A theoretical investigation. Journal of Chemical Physics, 2006, 124, 034310.	3.0	15
386	On the convergence of Z-averaged perturbation theory. Journal of Chemical Physics, 2008, 128, 074107.	3.0	15
387	Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCE <scp>ngine</scp>): Automation and interoperability among computational chemistry programs. Journal of Chemical Physics, 2021, 155, 204801.	3.0	15
388	Excited electronic states of HNC, hydrogen isocyanide. Journal of Chemical Physics, 1975, 63, 569-572.	3.0	14
389	Structures, Energetics and Vibrational Frequencies of Cyclopropyne. Israel Journal of Chemistry, 1983, 23, 93-96.	2.3	14
390	The description of elementary organoaluminum fragments: AlCHx (x=1,2,3). Journal of Chemical Physics, 1991, 95, 1834-1837.	3.0	14
391	The titane molecule (TiH4): Equilibrium geometry, infrared and Raman spectra of the first spectroscopically characterized transition metal tetrahydride. Journal of Chemical Physics, 1992, 96, 6857-6861.	3.0	14
392	The Rovibrational Energy Levels of Quasilinearc1A1Methylene. Journal of Molecular Spectroscopy, 1996, 179, 263-268.	1.2	14
393	The SiOH–HSiO system: A high level quantum mechanical study. Journal of Chemical Physics, 1996, 105, 1951-1958.	3.0	14
394	Definitive ab initio structure for the XÌf 2A′H2PO radical and resolution of the P–O stretching mode assignment. Journal of Chemical Physics, 1998, 109, 2694-2699.	3.0	14
395	Structures, thermochemistry, and electron affinities of the disilicon fluorides, Si2Fn/Si2Fâ^'n(n= 1–6). Molecular Physics, 2001, 99, 1053-1074.	1.7	14
396	The ability of silylenes to bind excess electrons: Electron affinities of SiX2, and SiXY species (X,Y=H,CH3,SiH3,F,Cl,Br). Journal of Chemical Physics, 2004, 121, 9361-9367.	3.0	14

#	Article	IF	CITATIONS
397	The low-lying electronic excited states of NiCO. Journal of Chemical Physics, 2004, 121, 1412-1418.	3.0	14
398	Hydrogen bridging in the compounds X2H (X=Al,Si,P,S). Journal of Chemical Physics, 2006, 125, 164322.	3.0	14
399	A laboratory and theoretical study of protonated carbon disulfide, HSCS+. Journal of Chemical Physics, 2009, 130, 234304.	3.0	14
400	Binuclear iron boronyl carbonyls isoelectronic with the well-known decacarbonyldimanganese. New Journal of Chemistry, 2012, 36, 1022.	2.8	14
401	A new type of sandwich compound: homoleptic bis(trimethylenemethane) complexes of the first row transition metals. New Journal of Chemistry, 2013, 37, 1545.	2.8	14
402	Coaxial versus perpendicular structures for a range of binuclear cyclopentadienylpalladium derivatives. New Journal of Chemistry, 2013, 37, 775.	2.8	14
403	Density cumulant functional theory from a unitary transformation: N-representability, three-particle correlation effects, and application to O4+. Journal of Chemical Physics, 2014, 141, 074111.	3.0	14
404	The methylsulfinyl radical CH ₃ SO examined. Physical Chemistry Chemical Physics, 2016, 18, 22293-22299.	2.8	14
405	Some features of the potential energy surfaces for the F++H2 ion–molecule reaction. Journal of Chemical Physics, 1978, 68, 781-782.	3.0	13
406	Reaction barrier for the methyldiazenyl radical decomposition (CH3N2→CH3+N2). Journal of Chemical Physics, 1994, 101, 1289-1292.	3.0	13
407	Equilibrium geometry of isocyanomethylene (HCNC) and comparison to the troublesome isomer cyanomethylene (HCCN). Journal of Chemical Physics, 1994, 101, 430-435.	3.0	13
408	The electron affinity of CF. Journal of Chemical Physics, 1994, 101, 10191-10192.	3.0	13
409	Revision of the experimental electron affinity of BO. Journal of Chemical Physics, 1997, 106, 8278-8279.	3.0	13
410	The hydroxyethynyl radical (CCOH): an accessible isomer of the ketenyl radical (HCCO)?. Chemical Physics Letters, 1998, 291, 509-516.	2.6	13
411	A comparison between the CISD[TQ] wave function and other highly correlated methods: Molecular geometry and harmonic vibrational frequencies of MgH2. Journal of Chemical Physics, 1998, 108, 7511-7515.	3.0	13
412	Coupled-cluster studies of the hyperfine splitting constants of the thioformyl radical. Journal of Chemical Physics, 2000, 112, 6245-6254.	3.0	13
413	Electron affinities of cyano-substituted ethylenes. Molecular Physics, 2001, 99, 663-675.	1.7	13
414	Coupled cluster study of the XÌf 2Î and Ãf 2Σ+ electronic states of the HCGe radical: Renner–Teller splitting and the effects of relativistic corrections. Journal of Chemical Physics, 2001, 115, 5932-5942.	3.0	13

#	Article	IF	CITATIONS
415	Characterization of the XÌf2A1 and ã4A2 electronic states of CH2+. Chemical Physics Letters, 2002, 352, 505-510.	2.6	13
416	Protonated carbonyl sulfide: Prospects for the spectroscopic observation of the elusive HSCO+ isomer. Journal of Chemical Physics, 2006, 124, 044322.	3.0	13
417	The subtleties of explicitly correlated Z-averaged perturbation theory: Choosing an R12 method for high-spin open-shell molecules. Journal of Chemical Physics, 2009, 131, 244116.	3.0	13
418	Mononuclear and binuclear manganese carbonyl hydrides: the preference for bridging hydrogens over bridging carbonyls. Dalton Transactions, 2009, , 3774.	3.3	13
419	Is There an Entrance Complex for the F+NH ₃ Reaction?. Chemistry - an Asian Journal, 2011, 6, 3152-3156.	3.3	13
420	Fundamental vibrational frequencies and spectroscopic constants for the methylperoxyl radical, CH ₃ O ₂ , and related isotopologues ¹³ CH ₃ OO, CH ₃ ¹⁸ O ¹⁸ O, and CD ₃ OO. Molecular Physics, 2012, 110, 2419-2427.	1.7	13
421	Spin–orbit corrected potential energy surface features for the I (2P3/2) + H2O → HI + OH forward and reverse reactions. Physical Chemistry Chemical Physics, 2014, 16, 2641.	2.8	13
422	Examining the ground and first excited states of methyl peroxy radical with high-level coupled-cluster theory. Molecular Physics, 2015, 113, 2992-2998.	1.7	13
423	Electron affinities, molecular structures, and thermochemistry of the fluorine, chlorine and bromine substituted methyl radicals. Molecular Physics, 2002, 100, 3615-3648.	1.7	12
424	Molecules for Materials: Structures, Thermochemistry, and Electron Affinities of the Digermanium Fluorides Ge2Fn/Ge2Fn- (n=1-6): A Wealth of Unusual Structures. ChemPhysChem, 2002, 3, 179-194.	2.1	12
425	Molecular structures, thermochemistry, and electron affinities for the dichlorine oxides: Cl2On/Cl2O â~'n (n= 1-4). International Journal of Quantum Chemistry, 2003, 95, 731-757.	2.0	12
426	Structures, thermochemistry, vibrational frequencies and integrated infrared intensities of SF5CF3and SF5, with implications for global temperature patterns. Molecular Physics, 2004, 102, 1415-1439.	1.7	12
427	The Vinyl Radical and Fluorinated Vinyl Radicals, C2H3-nFn (n = 0â^'3), and Corresponding Anions: Comparison with the Isoelectronic Complexes [X··ŶC≡CZ] Journal of Physical Chemistry A, 2004, 108, 1608-1615.	2.5	12
428	The diazocarbene (CNN) molecule: Characterization of the X̃â€,3Σâ^' and Ãâ€,3Î electronic states. Journal of Chemical Physics, 2004, 120, 9536-9546.	3.0	12
429	Beyond the metal–metal triple bond in binuclear cyclopentadienylchromium carbonyl chemistry. Dalton Transactions, 2008, , 4805.	3.3	12
430	Terminal vs bridge bonding of methylene to metal systems: Al2CH2as a model system. Journal of Chemical Physics, 1983, 78, 328-338.	3.0	11
431	The treatment of triple excitations within the coupled cluster description of molecular electronic structure. Journal of Chemical Physics, 1985, 83, 703-712.	3.0	11
432	Ab initio prediction of the structure, harmonic vibrational frequencies, and dissociation energy of the H2–GeH+3–H2 cluster ion. Journal of Chemical Physics, 1995, 102, 3667-3673.	3.0	11

#	Article	IF	CITATIONS
433	The 3d Rydberg (3A2) electronic state observed by Herzberg and Shoosmith for methylene. Journal of Chemical Physics, 1997, 106, 8753-8759.	3.0	11
434	An ab initio study on the four electronically lowest-lying states of CH2 using the state-averaged complete active space second-order configuration interaction method. Chemical Physics, 1997, 225, 23-31.	1.9	11
435	Formation of CF3Oâ^' in the gas phase. Journal of Chemical Physics, 1999, 110, 8436-8442.	3.0	11
436	The equilibrium structure of the ammonium radical Rydberg ground state. Journal of Chemical Physics, 2001, 114, 9863-9865.	3.0	11
437	III: PROPERTIES OF COMPLEX SYSTEMS. Molecular Physics, 2003, 101, 211-225.	1.7	11
438	The Binuclear Cyclopentadienylvanadium Carbonyls (η5-C5H5)2V2(CO)7 and (η5-C5H5)2V2(CO)6: Comparison with Homoleptic Chromium Carbonyls. European Journal of Inorganic Chemistry, 2007, 2007, 1599-1605.	2.0	11
439	Binuclear homoleptic rhodium carbonyls: Structures, energetics, and vibrational spectra. Dalton Transactions, 2009, , 2599.	3.3	11
440	Chromium-Chromium Bonding in Binuclear Azulene Chromium Carbonyl Complexes. European Journal of Inorganic Chemistry, 2010, 2010, 5161-5173.	2.0	11
441	Vertical detachment energies of anionic thymidine: Microhydration effects. Journal of Chemical Physics, 2010, 133, 144305.	3.0	11
442	Does the metal–metal sextuple bond exist in the bimetallic sandwich compounds Cr ₂ (C ₆ H ₆) ₂ , Mo ₂ (C ₆ H ₆) ₂ , and W ₂ (C ₆ H ₆) ₂ ? ^{â€} . Molecular Physics, 2013, 111, 2523-2535.	1.7	11
443	From Gasâ€Phase to Liquidâ€Water Chemical Reactions: The Fluorine Atom Plus Water Trimer System. Angewandte Chemie - International Edition, 2015, 54, 11223-11226.	13.8	11
444	Dispersion Effects in Stabilizing Organometallic Compounds: Tetra-1-norbornyl Derivatives of the First-Row Transition Metals as Exceptional Examples. Journal of Physical Chemistry A, 2019, 123, 9514-9519.	2.5	11
445	Characterization of the 2-methylvinoxy radical + O2 reaction: A focal point analysis and composite multireference study. Journal of Chemical Physics, 2019, 151, 124302.	3.0	11
446	A Stable Naked Dithiolene Radical Anion and Synergic THF Ring-Opening. Journal of the American Chemical Society, 2020, 142, 17301-17305.	13.7	11
447	Reduced Density Matrix Cumulants: The Combinatorics of Size-Consistency and Generalized Normal Ordering. Journal of Chemical Theory and Computation, 2020, 16, 6150-6164.	5.3	11
448	Coupled Cluster Externally Corrected by Adaptive Configuration Interaction. Journal of Chemical Theory and Computation, 2021, 17, 182-190.	5.3	11
449	Some characteristics of the intravalence triplet–triplet electronic transition in HCN. Journal of Chemical Physics, 1980, 73, 1470-1472.	3.0	10
450	SiLiF: The competition between electronic effects favoring singlet and triplet ground states. A case study. Journal of Chemical Physics, 1985, 83, 4581-4584.	3.0	10

#	Article	IF	CITATIONS
451	The bending frequency ÎNS of dinitrogen sulfide (N2S): A theoretical analysis demonstrating the importance of Coriolis coupling terms. Journal of Chemical Physics, 1993, 98, 4777-4782.	3.0	10
452	Rotational constants for the Cl̃ f â \in ‰2A2 state of NO2. Journal of Chemical Physics, 1993, 99, 7926-7928.	3.0	10
453	The electron affinities of PF and PF2. Journal of Chemical Physics, 1998, 108, 1050-1054.	3.0	10
454	The ground and two lowest-lying singlet excited electronic states of copper hydroxide (CuOH). Journal of Chemical Physics, 2005, 123, 014313.	3.0	10
455	Effects of Fluorine on the Structures and Energetics of the Propynyl and Propargyl Radicals and Their Anions. Journal of Organic Chemistry, 2005, 70, 8676-8686.	3.2	10
456	Characterization of the HSiNî—,HNSi system in its electronic ground state. Journal of Chemical Physics, 2009, 130, 104301.	3.0	10
457	The mixed sandwich compounds C5H5MC7H7of the first row transition metals: variable hapticity of the seven-membered ring. Molecular Physics, 2010, 108, 883-894.	1.7	10
458	Telluroformaldehyde and its derivatives: structures, ionization potentials, electron affinities and singlet–triplet gaps of the X2CTe and XYCTe (X,YÂ=ÂH, F, Cl, Br, I and CN) species. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	10
459	Peroxyacetyl radical: Electronic excitation energies, fundamental vibrational frequencies, and symmetry breaking in the first excited state. Journal of Chemical Physics, 2015, 142, 054303.	3.0	10
460	Calculation of Spin Densities for Light Atoms. Journal of Chemical Physics, 1968, 49, 469-470.	3.0	9
461	The BERKELEY system. III. General configuration-interaction methods for open-shell molecular electronic states. International Journal of Quantum Chemistry, 1978, 14, 603-612.	2.0	9
462	The anomalous behavior of the Zeeman anticrossing spectra of AÌf 1Au acetylene: Theoretical considerations. Journal of Chemical Physics, 1996, 104, 1774-1778.	3.0	9
463	Elusive electron affinity of ClF. Journal of Chemical Physics, 2003, 119, 11615-11619.	3.0	9
464	The singlet electronic ground state isomers of dialuminum monoxide: AlOAl, AlAlO, and the transition state connecting them. Journal of Chemical Physics, 2005, 122, 094304.	3.0	9
465	Homoleptic tetranuclear osmium carbonyls: from the rhombus via the butterfly to the tetrahedron. Dalton Transactions, 2008, , 1366.	3.3	9
466	Vanadium Carbonyl Nitrosyl Compounds: The Carbonyl Nitrosyl Chemistry of an Oxophilic Early Transition Metal. European Journal of Inorganic Chemistry, 2009, 2009, 1647-1656.	2.0	9
467	Mononuclear and binuclear cobalt carbonyl nitrosyls: comparison with isoelectronic nickel carbonyls. New Journal of Chemistry, 2009, 33, 2090.	2.8	9
468	Binuclear manganesecarbonyl thiocarbonyls: metal–metal multiple bonds versus four-electron donorthiocarbonyl groups. New Journal of Chemistry, 2010, 34, 92-102.	2.8	9

#	Article	IF	CITATIONS
469	Open chains versus closed rings: comparison of binuclear butadiene iron carbonyls with their cyclobutadiene analogues. New Journal of Chemistry, 2011, 35, 920.	2.8	9
470	Binuclear Pentalene Iron Carbonyl Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 2746-2755.	2.0	9
471	Carbonyl migration from phosphorus to the metal in binuclear phosphaketenyl metal carbonyl complexes to give bridging diphosphido complexes. New Journal of Chemistry, 2015, 39, 1390-1403.	2.8	9
472	The Recently Synthesized Dimagnesiabutadiene and the Analogous Dimetallaâ€Beryllium, â€Calcium, â€Strontium, and â€Barium Compounds. Chemistry - A European Journal, 2016, 22, 15019-15026.	3.3	9
473	Contrasting the Mechanism of H ₂ Activation by Monomeric and Potassium‣tabilized Dimeric Al ^I Complexes: Do Potassium Atoms Exert any Cooperative Effect?. Chemistry - A European Journal, 2021, 27, 17369-17378.	3.3	9
474	The HO2 + ion. Molecular Physics, 1989, 68, 1095-1109.	1.7	8
475	The silyl anion (SiHâ^3): Harmonic vibrational frequencies and infrared intensities predicted at the SCF, CISD, and CCSD levels of theory with substantial basis sets. Journal of Chemical Physics, 1990, 93, 8098-8104.	3.0	8
476	Monofluorinated hydrogen sulfide (HFS): A definitive theoretical prediction of the infrared spectrum. Journal of Chemical Physics, 1992, 96, 2044-2047.	3.0	8
477	The structure of the bitetrahedryl molecule?A major shift due to electron correlation: Effects of carbonyl substituents, implications for the structure of coupled tricyclo[3.1.0.02,6]hexyl, and extension to cubylcubane. International Journal of Quantum Chemistry, 1992, 42, 953-963.	2.0	8
478	Ethynylvinylidene. Israel Journal of Chemistry, 1993, 33, 317-321.	2.3	8
479	A study of the silagermylyne (SiGeH2) molecule: A new monobridged structure. International Journal of Quantum Chemistry, 1995, 56, 593-604.	2.0	8
480	Chromium dihydride (CrH2): theoretical evidence for a bent5B2ground state. Molecular Physics, 1995, 84, 1109-1126.	1.7	8
481	Examination of the Stabilities of Group 14 (C, Si, Ge, Sn, Pb) Congeners of Dihydroxycarbene and Dioxirane. Comparison to Formic Acid and Hydroperoxycarbene Congeners. Inorganic Chemistry, 1999, 38, 6271-6277.	4.0	8
482	Ring structure of the NO dimer radical cation: A possible new assignment of the mysterious IR absorption at 1424 cmâ^'1. Journal of Chemical Physics, 2002, 117, 9727-9732.	3.0	8
483	Low-lying quartet electronic states of nitrogen dioxide. Journal of Chemical Physics, 2007, 127, 174303.	3.0	8
484	A Carbonyl Group Bridging Four Metal Atoms in a Homoleptic Carbonylmetal Cluster: The Remarkable Case of ÂCo4(CO)11. European Journal of Inorganic Chemistry, 2008, 2008, 2158-2164.	2.0	8
485	Binuclear manganese and rhenium carbonyls M2(CO)n (n = 10, 9, 8, 7): comparison of first row and third row transition metal carbonyl structures. Dalton Transactions, 2008, , 2495.	3.3	8
486	Mononuclear bis(pentalene) sandwich compounds of the first-row transition metals: variable hapticity of the pentalene rings and intramolecular coupling reactions. New Journal of Chemistry, 2011, 35, 1718.	2.8	8

#	Article	IF	CITATIONS
487	Binuclear pentalene manganese carbonyl complexes: conventionaltransand unconventionalcisstructures. Molecular Physics, 2012, 110, 1637-1650.	1.7	8
488	Metallametallocenes: Sandwich Compounds of the Firstâ€Row Transition Metals (M, M′ = Fe, Co, Ni) Containing a Metallacyclopentadiene Ring. European Journal of Inorganic Chemistry, 2013, 2013, 2070-2077.	2.0	8
489	The exothermic HCl + OH·(H2O) reaction: Removal of the HCl + OH barrier by a single water molecule. Journal of Chemical Physics, 2014, 140, 124316.	3.0	8
490	Substituent effects on the aromaticity of benzene—An approach based on interaction coordinates. Journal of Chemical Physics, 2019, 150, 214108.	3.0	8
491	Sulfurous and sulfonic acids: Predicting the infrared spectrum and setting the surface straight. Journal of Chemical Physics, 2020, 152, 024302.	3.0	8
492	Fermi.jl: A Modern Design for Quantum Chemistry. Journal of Chemical Theory and Computation, 2022, 18, 677-686.	5.3	8
493	The electronic spectra of SNS. Lowâ€lying doublet states. Journal of Chemical Physics, 1990, 93, 5053-5061.	3.0	7
494	The silyl anion (SiHâ~'3): Cubic/quartic force field and anharmonic contributions to the fundamental vibrational frequencies. Journal of Chemical Physics, 1991, 94, 8112-8121.	3.0	7
495	The inversion barrier in NF+ \hat{a} 3. Journal of Chemical Physics, 1994, 100, 4459-4466.	3.0	7
496	The GeOH+–HGeO+ system: A detailed quantum mechanical study. Journal of Chemical Physics, 1995, 103, 7975-7982.	3.0	7
497	What is the true electronic ground state of the disilaethynyl radical (SiSiH): 2B1 or 2A1?. Journal of Chemical Physics, 2001, 115, 2157-2164.	3.0	7
498	Theoretical characterization of the disilaethynyl anion (Si[sub 2]H[sup â^']). Journal of Chemical Physics, 2003, 118, 7256.	3.0	7
499	Application of equation-of-motion coupled-cluster methods to low-lying singlet and triplet electronic states of HBO and BOH. Journal of Chemical Physics, 2005, 122, 234316.	3.0	7
500	Unsaturation and variable hapticity in binuclear azulene manganese carbonyl complexes. Dalton Transactions, 2010, 39, 10702.	3.3	7
501	Electron Attachment to Solvated dGpdG: Effects of Stacking on Base entered and Phosphate entered Valenceâ€Bound Radical Anions. Chemistry - A European Journal, 2012, 18, 5232-5238.	3.3	7
502	Features of the potential energy surface for the SiO + OH → SiO2+ H reaction: relationship to oxygen isotopic partitioning during gas phase SiO2formation. RSC Advances, 2014, 4, 47163-47168.	3.6	7
503	Chlorine peroxide (Cl ₂ O ₂) and its isomers: structures, spectroscopy, formation and thermochemistry. Molecular Physics, 2016, 114, 1135-1147.	1.7	7
504	Prediction and Characterization of Alkalineâ€Earth (M=Be, Mg, Ca, Sr, and Ba) Metallacyclopentadienes and Relevant Derivatives. ChemistrySelect, 2017, 2, 1442-1453.	1.5	7

#	Article	IF	CITATIONS
505	Ï€-Hydrogen Bonding Probes the Reactivity of Aromatic Compounds: Nitration of Substituted Benzenes. Journal of Physical Chemistry A, 2019, 123, 1069-1076.	2.5	7
506	Vibrational analysis of the ubiquitous interstellar molecule cyclopropenylidene (<i>c</i> -C ₃ H ₂): the importance of numerical stability. Molecular Physics, 2020, 118, e1589007.	1.7	7
507	Conclusive determination of ethynyl radical hydrogen abstraction energetics and kinetics*. Molecular Physics, 2020, 118, e1769214.	1.7	7
508	Analytic energy third derivatives for pairedâ€excited multiconfiguration selfâ€consistentâ€field wave functions. Journal of Chemical Physics, 1989, 90, 334-345.	3.0	6
509	The electronic spectrum of NS2: Lowâ€lying quartet states. Journal of Chemical Physics, 1991, 94, 1277-1287.	3.0	6
510	The fundamental vibrational frequencies of the silyl anion (SiH-3). Molecular Physics, 1992, 76, 467-474.	1.7	6
511	Is F3+ viable? A high-level ab initio comparison of F3+ and Cl3+. Journal of Chemical Physics, 1998, 109, 1772-1780.	3.0	6
512	Structure and reactivity of the vinylcyclopropane radical cation. Journal of Molecular Structure, 2001, 599, 95-116.	3.6	6
513	The extremely flat torsional potential energy surface of oxalyl chloride. Journal of Chemical Physics, 2005, 122, 234313.	3.0	6
514	Octacarbonyldivanadium: a highly unsaturated binuclear metal carbonyl. Molecular Physics, 2006, 104, 763-775.	1.7	6
515	Coupled cluster investigation on the low-lying electronic states of CuCN and CuNC and the ground state barrier to isomerization. Journal of Chemical Physics, 2007, 127, 154324.	3.0	6
516	The highly unsaturated dimetal hexacarbonyls of manganese and rhenium: Alternatives to a formal metal–metal quintuple bond. International Journal of Quantum Chemistry, 2009, 109, 3082-3092.	2.0	6
517	Binuclear Cyclopentadienylmanganese Carbonyl Thiocarbonyls: Four-Electron Donor Bridging Thiocarbonyl Groups of Two Types and a Bridging Acetylenedithiolate Ligand. European Journal of Inorganic Chemistry, 2010, 2010, 4175-4186.	2.0	6
518	Neutral homoleptic tetranuclear iron carbonyls: why haven't they been synthesized as stable molecules?. New Journal of Chemistry, 2010, 34, 208-214.	2.8	6
519	Fe3(BF)3(CO)8 structures with face-semibridging fluoroborylene ligands and a bicapped tetrahedral Fe3B3 cluster isoelectronic with Os6(CO)18. New Journal of Chemistry, 2010, 34, 2813.	2.8	6
520	Binuclear methylaminobis(difluorophosphine) iron carbonyls: phosphorus–nitrogen bond cleavage in preference to iron–iron multiple bond formation. New Journal of Chemistry, 2013, 37, 3294.	2.8	6
521	Tetragermacyclobutadiene: Energetically Disfavored with Respect to Its Structural Isomers. Chemistry - A European Journal, 2013, 19, 7487-7495.	3.3	6
522	Bis(azulene) "submarine―metal dimer sandwich compounds (C ₁₀ H ₈) ₂ M ₂ (M = Ti, V, Cr, Mn, Fe, Co, Ni): Paral opposed orientations. Journal of Computational Chemistry, 2016, 37, 250-260.	lel a ß d	6

#	Article	IF	CITATIONS
523	Hyperconjugative effects in Ï€â€hydrogen bonding: Theory and experiment. Journal of Computational Chemistry, 2018, 39, 527-534.	3.3	6
524	Fundamental Vibrational Analyses of the HCN Monomer, Dimer and Associated Isotopologues. ChemPhysChem, 2018, 19, 3257-3265.	2.1	6
525	Substituted Ortho-Benzynes: Properties of the Triple Bond. Journal of Organic Chemistry, 2020, 85, 9905-9914.	3.2	6
526	The reaction of methane with molecular oxygen: A semiquantitative estimate of the activation energy. Journal of Chemical Physics, 1989, 90, 6391-6394.	3.0	5
527	Structures and electron affinities of the di-arsenic fluorides As2Fn/As2F nâ^' (n= 1-8). Journal of Computational Chemistry, 2005, 26, 411-435.	3.3	5
528	The lowest triplet electronic states of polyacenes and perfluoropolyacenes. Molecular Physics, 2007, 105, 2743-2752.	1.7	5
529	Dimerization of a fluorocarbyne complex to a tetrahedrane derivative: Fluorocarbyne and difluoroacetylene cobalt carbonyl complexes. Dalton Transactions, 2010, 39, 5242.	3.3	5
530	The quest for trifluorophosphine as a bridging ligand in homoleptic binuclear and tetranuclear cobalt complexes. Molecular Physics, 2010, 108, 2477-2489.	1.7	5
531	The Beryllium Pentamer: Trailing an Uneven Sequence of Dissociation Energies. ChemPhysChem, 2012, 13, 1255-1260.	2.1	5
532	The Structure and Cl–O Dissociation Energy of the ClOO Radical: Finally, the Right Answers for the Right Reason. Journal of Physical Chemistry A, 2018, 122, 2604-2610.	2.5	5
533	Energetics and mechanisms for the acetonyl radical + O2 reaction: An important system for atmospheric and combustion chemistry. Journal of Chemical Physics, 2020, 152, 114301.	3.0	5
534	Four isomers of In ₂ H ₂ : a careful comparison between theory and experiment. Molecular Physics, 2021, 119, .	1.7	5
535	Kinetic Stability of Pentazole. Journal of Physical Chemistry A, 2021, 125, 9092-9098.	2.5	5
536	The search for the lowâ€lying states of the silicon carbide cluster cation Si2C+2. Journal of Chemical Physics, 1995, 103, 7025-7029.	3.0	4
537	Comparison between molecular geometry and harmonic vibrational frequency predictions from CISD[TQ] and CISDTQ wave functions for hydrogen sulfide. Journal of Chemical Physics, 1997, 107, 10616-10619.	3.0	4
538	The treacherous potential energy hypersurface of AgSiO. Journal of Chemical Physics, 2003, 118, 10623-10630.	3.0	4
539	Assessing Alkyl-, Silyl-, and Halo-Substituent Effects on the Electron Affinities of Silyl Radicals. Journal of Physical Chemistry A, 2005, 109, 10100-10105.	2.5	4
540	Comparison of Isoelectronic Heterometallic and Homometallic Binuclear Cyclopentadienylmetal Carbonyls: The Iron–Nickel vs. the Dicobalt Systems. European Journal of Inorganic Chemistry, 2008, 2008, 1219-1225.	2.0	4

#	Article	IF	CITATIONS
541	Toward the observation of quartet states of the ozone radical cation: Insights from coupled cluster theory. Journal of Chemical Physics, 2008, 128, 214302.	3.0	4
542	The ten chemically transparent dinitronaphthalene isomers and their radical anions. Molecular Physics, 2010, 108, 2491-2509.	1.7	4
543	Terminal versus bridging cyclobutadiene rings in binuclear nickel carbonyl derivatives: A cube-antiprism twist of the cyclobutadiene rings in the perpendicular structures. New Journal of Chemistry, 2010, 34, 1885.	2.8	4
544	Unsaturation in homoleptic tetranuclear iridium carbonyls: a comparison of density functional theory with the MP2 method in metal cluster structures. Theoretical Chemistry Accounts, 2011, 130, 393-400.	1.4	4
545	New Structural Features in Tetranuclear Iron Carbonyl Thiocarbonyls: Exotriangular Iron Atoms and Sixâ€Electronâ€Donating Thiocarbonyl Groups Bridging Four Iron Atoms. European Journal of Inorganic Chemistry, 2012, 2012, 1104-1113.	2.0	4
546	Moving on from F+H ₂ : The More Challenging Reaction between Atomic Fluorine and Methylamine. ChemPhysChem, 2013, 14, 896-899.	2.1	4
547	Toward unsaturated stannylenes Y ₂ Zn: and related compounds with triplet electronic ground states. RSC Advances, 2016, 6, 53749-53759.	3.6	4
548	σ Bond activation through tunneling: formation of the boron hydride cations BH _n ⁺ (n = 2, 4, 6). Physical Chemistry Chemical Physics, 2016, 18, 4063-4070.	2.8	4
549	Mechanisms of the Ethynyl Radical Reaction with Molecular Oxygen. Journal of Physical Chemistry A, 2018, 122, 9498-9511.	2.5	4
550	Group 15 and 16 Nitrene‣ike Pnictinidenes. Chemistry - A European Journal, 2021, 27, 14461-14471.	3.3	4
551	ClF2: Structure and infrared spectra of a weakly bound triatomic molecule. Journal of Chemical Physics, 1993, 98, 8051-8056.	3.0	3
552	Silacyanogen. Journal of Chemical Physics, 1997, 107, 5776-5779.	3.0	3
553	An analysis of the conformers of 1,5-hexadiene. Molecular Physics, 2002, 100, 441-446.	1.7	3
554	Does GaH5 exist?. Journal of Chemical Physics, 2005, 123, 204303.	3.0	3
555	High electron affinities of bicyclo[n,n, 0]perfluoroalkanes. Molecular Physics, 2006, 104, 1311-1324.	1.7	3
556	(Cyclopentadienyl)nitrosylmanganese Compounds: The Original Molecules Containing Bridging Nitrosyl Groups. European Journal of Inorganic Chemistry, 2009, 2009, 3982-3992.	2.0	3
557	From two-electron via four-electron to six-electron donor carbonyl groups in trinuclear derivatives of the oxophilic metal niobium. Dalton Transactions, 2009, , 3748.	3.3	3
558	From acetylene complexes to vinylidene structures: The GeC ₂ H ₂ system. Journal of Computational Chemistry, 2011, 32, 15-22.	3.3	3

#	Article	IF	CITATIONS
559	Protonated Digermane, Distannane, and Diplumbane: Can They Be Made in the Laboratory?. European Journal of Inorganic Chemistry, 2014, 2014, 5015-5020.	2.0	3
560	The Li··ĤF van der Waals minimum and the barrier to the deep HF–Li potential well. Molecular Physics, 2014, 112, 770-773.	1.7	3
561	From spiropentane to butterfly and tetrahedral structures in tetranuclear iron carbonyl carbide chemistry. New Journal of Chemistry, 2014, 38, 3762-3769.	2.8	3
562	Novel germanetellones: XYGeî€Te (X, Y = H, F, Cl, Br, I and CN) – structures and energetics. Comparison with the first synthetic successes. Dalton Transactions, 2014, 43, 4151.	3.3	3
563	Streptococcal Hyaluronate Lyase Reveals the Presence of a Structurally Significant CHâ‹â‹â‹O Hydrogen Bond. Chemistry - A European Journal, 2014, 20, 990-998.	3.3	3
564	Triple decker sandwiches and related compounds of the first row transition metals with cyclopentadienyl and hexafluorobenzene rings: remarkable effects of fluorine substitution. Physical Chemistry Chemical Physics, 2015, 17, 20100-20113.	2.8	3
565	Catenanes: A molecular mechanics analysis of the (C ₁₃ H ₂₆) ₂ Structure 13â€13 D2. Journal of Computational Chemistry, 2016, 37, 124-129.	3.3	3
566	The Reaction between Bromine and the Water Dimer and the Highly Exothermic Reverse Reaction. Journal of Computational Chemistry, 2016, 37, 177-182.	3.3	3
567	A remarkable case of basis set dependence: the false convergence patterns of the methyl anion. Molecular Physics, 2019, 117, 1069-1077.	1.7	3
568	Cyclobutyne: Minimum or Transition State?. Journal of Organic Chemistry, 2019, 84, 5548-5553.	3.2	3
569	Dibridged, Monobridged, Vinylidene-Like, and Linear Structures for the Alkaline Earth Dihydrides Be ₂ H ₂ , Mg ₂ H ₂ , Ca ₂ H ₂ , Sr ₂ H ₂ , and Ba ₂ H ₂ . Proposals for Observations. Inorganic Chemistry, 2020, 59, 10404-10408.	4.0	3
570	The synchronous thermal decomposition mechanism of azoisopropane. Molecular Physics, 1995, 85, 769-779.	1.7	2
571	The disilaketenyl radical (HSiSiO) in its ground and first excited electronic states. Journal of Chemical Physics, 1999, 111, 227-234.	3.0	2
572	The molecular structure and infrared and Raman spectra of SCCCS. Computational and Theoretical Chemistry, 1999, 460, 117-121.	1.5	2
573	Vibrational energy levels for the electronic ground state of the diazocarbene (CNN) molecule. Molecular Physics, 2008, 106, 357-365.	1.7	2
574	Inhibition of Alkyne Cyclotrimerization to Arenes on a Metal Site by Fourâ€Electron Donation through Simultaneous Sigma and Pi Bonding: The Tris(alkyne)Tungsten Carbonyls. European Journal of Inorganic Chemistry, 2009, 2009, 5439-5448.	2.0	2
575	Quantum Mechanical Modeling for the GeX2/GeHX + GeH4 Reactions (X = H, F, Cl, and Br). Journal of Physical Chemistry A, 2010, 114, 4210-4223.	2.5	2
576	Edgeâ€Bridging and Faceâ€Bridging Hydrogen Atoms in Trinuclear Rhenium Carbonyl Hydrides. European Journal of Inorganic Chemistry, 2011, 2011, 4626-4636.	2.0	2

#	Article	IF	CITATIONS
577	Arbitrary order El'yashevich–WilsonBtensor formulas for the most frequently used internal coordinates in molecular vibrational analyses. Journal of Chemical Physics, 2012, 137, 164103.	3.0	2
578	Metal triangles versus metal chains and terminal versus bridging hydrogen atoms in trinuclear osmium carbonyl hydride chemistry. New Journal of Chemistry, 2014, 38, 1433-1440.	2.8	2
579	Conical Intersections and Low‣ying Electronic States of Tetrafluoroethylene. ChemPhysChem, 2014, 15, 2359-2366.	2.1	2
580	1,1â€Dilithioethylene: Toward Spectroscopic Identification of the Definitive Singlet Ground Electronic State of a Peculiar Structure. ChemPhysChem, 2016, 17, 1623-1629.	2.1	2
581	Characterizing a nonclassical carbene with coupled cluster methods: cyclobutylidene. Physical Chemistry Chemical Physics, 2016, 18, 24560-24568.	2.8	2
582	Ï€â€Hydrogen Bonding Probes Chemical Reactivity: Bromination of a CC Double Bond and Electrophilic Aromatic Benzylation. ChemistrySelect, 2019, 4, 10934-10942.	1.5	2
583	Comparative Study of the Thermal Stabilities of the Experimentally Known High-Valent Fe(IV) Compounds Fe(1-norbornyl)4 and Fe(cyclohexyl)4. Journal of Physical Chemistry A, 2020, 124, 6867-6876.	2.5	2
584	Assessing the orbital-optimized unitary <i>Ansatz</i> for density cumulant theory. Journal of Chemical Physics, 2020, 153, 244102.	3.0	2
585	Unusual Structures of the Parent Molecules Diarsene, Distibene, and Dibismuthene: Toward Their Observation. Chemistry - A European Journal, 2020, 26, 14159-14166.	3.3	2
586	Fluorine Migration from Carbon to Iron and Fluorine–Iron Dative Bonds in Octafluorocyclohexadiene Iron Carbonyl Chemistry. Organometallics, 2021, 40, 397-407.	2.3	2
587	Highly Strained Pn(CH)3 (Pn = N, P, As, Sb, Bi) Tetrahedranes: Theoretical Characterization. Journal of Physical Chemistry A, 2021, 125, 2612-2621.	2.5	2
588	Mini-Review on Structure–Reactivity Relationship for Aromatic Molecules: Recent Advances. ACS Omega, 2022, 7, 8199-8208.	3.5	2
589	First and second energy derivative analyses for open-shell self-consistent field wavefunctions. Molecular Physics, 1994, 82, 713-733.	1.7	1
590	The 1-silaketenyl radical (HSiCO): Ground and first excited electronic states. Journal of Chemical Physics, 2000, 112, 2168-2175.	3.0	1
591	Triplet states of carbenium and silylium cations. Chemical Physics Letters, 2001, 337, 158-168.	2.6	1
592	Elementary constituents of microdevices: The Ge2H fragment. Journal of Chemical Physics, 2006, 125, 164317.	3.0	1
593	Characterization of the X̃A12, ÃB12, and X̃Î2 electronic states of the Ga2H molecule and the X̃Aâ€22 and isomerization transition states connecting the three minima. Journal of Chemical Physics, 2006, 124, 044309.	ÃA″2 3.0	1
594	Elementary Energetic Effects of Radiation Damage to DNA and RNA Subunits. AIP Conference Proceedings, 2007, , .	0.4	1

#	Article	IF	CITATIONS
595	Major differences between trifluorophosphine and carbonyl ligands in binuclear cyclopentadienyliron complexes. New Journal of Chemistry, 2015, 39, 3708-3718.	2.8	1
596	Enhanced Relative Stability of Metallabenzenes versus Metallocenes upon Ring Perfluorination: Nickel, Palladium, and Platinum Systems. European Journal of Inorganic Chemistry, 2017, 2017, 4714-4721.	2.0	1
597	Reinterpretation of the electronic absorption spectrum of the methylene amidogen radical (H2CN). Journal of Chemical Physics, 2018, 149, 094302.	3.0	1
598	The Nature of Lithium Bonding in C ₂ H ₂ Li ₂ , C ₆ Li ₆ , and Lithium Halide Dimers. Organometallics, 2019, 38, 4708-4716.	2.3	1
599	Substituent Effects on Aluminyl Anions and Derived Systems: A High-Level Theory. Journal of Physical Chemistry A, 2021, 125, 10379-10391.	2.5	1
600	Characterization of the [Xtilde] 1Σ+Ã3Πand Ã1Πelectronic states of BBO. Molecular Physics, 2003, 101, 1273-1283.	1.7	0
601	The interplay between metal–metal bonds, fourâ€electron donor carbonyl groups, and fiveâ€electron donor nitrosyl groups in highly unsaturated binuclear rhenium carbonyl nitrosyls. International Journal of Quantum Chemistry, 2009, 109, 2273-2285.	2.0	0
602	Metal–metal bonding in biscycloheptatrienyl dimetal compounds of the secondâ€row transition metals. International Journal of Quantum Chemistry, 2017, 117, e25374.	2.0	0
603	Unsaturation in binuclear iron carbonyl complexes of the split (3 + 2) fiveâ€electron donor hydrocarbon ligand bicyclo[3.2.1]octaâ€2,6â€dienâ€4â€yl: Role of agostic hydrogen atoms. International Journal of Quantum Chemistry, 2019, 119, e26010.	2.0	0
604	Cumulants as the Variables of Density Cumulant Theory: A Path to Hermitian Triples. Journal of Chemical Physics, 2021, 155, 244105.	3.0	0
605	A Cationic Magnesium-Based Dithiolene Radical. Organometallics, 2022, 41, 527-531.	2.3	0