
Sergio Scudino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1156161/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy. Journal of Materials Science and Technology, 2022, 114, 42-54.	5.6	9
2	Synthesis of Bulk Zr48Cu36Al8Ag8 Metallic Glass by Hot Pressing of Amorphous Powders. Journal of Manufacturing and Materials Processing, 2021, 5, 23.	1.0	3
3	Phase Formation, Microstructure and Mechanical Properties of Mg67Ag33 as Potential Biomaterial. Metals, 2021, 11, 461.	1.0	0
4	Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting. Journal of Materials Science and Technology, 2020, 36, 18-26.	5.6	42
5	Atomic-scale origin of shear band multiplication in heterogeneous metallic glasses. Scripta Materialia, 2020, 178, 57-61.	2.6	83
6	Mechanical properties and tribological behavior of aluminum matrix composites reinforced with Fe-based metallic glass particles: Influence of particle size. Powder Technology, 2020, 361, 512-519.	2.1	20
7	Interfacial characteristics and mechanical asymmetry in Al2024 matrix composites containing Fe-based metallic glass particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139971.	2.6	6
8	High-strength and ductile ultrafine-grained Al–Y–Ni–Co alloy for high-temperature applications. Journal of Alloys and Compounds, 2020, 848, 156655.	2.8	12
9	Effect of solution time on the microstructure, precipitation behavior and mechanical properties of (Co0.5NiFeCrTi0.5Â+ÂSiC)p/7075Al hybrid composite. Materials Characterization, 2020, 170, 110702.	1.9	2
10	Guiding shear bands in bulk metallic glasses using stress fields: A perspective from the activation of flow units. Physical Review B, 2020, 102, .	1.1	12
11	Viscous Flow of Supercooled Liquid in a Zr-Based Bulk Metallic Glass Synthesized by Additive Manufacturing. Materials, 2020, 13, 3803.	1.3	14
12	A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting. Transactions of Nonferrous Metals Society of China, 2020, 30, 2001-2034.	1.7	106
13	Role of pre-existing shear band morphology in controlling the fracture behavior of a Zr–Ti–Cu–Ni–Al bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 786, 139396.	2.6	8
14	Effect of heat treatment on microstructure and mechanical properties of Al 2024 matrix composites reinforced with Ni60Nb40 metallic glass particles. Journal of Alloys and Compounds, 2019, 808, 151732.	2.8	20
15	Effect of ball milling on microstructure and mechanical properties of 6061Al matrix composites reinforced with high-entropy alloy particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 762, 138116.	2.6	51
16	Selective laser melting of 316L stainless steel: Influence of TiB2 addition on microstructure and mechanical properties. Materials Today Communications, 2019, 21, 100615.	0.9	27
17	Local elasticity and macroscopic plasticity in homogeneous and heterogeneous bulk metallic glasses. Applied Physics Letters, 2019, 115, 141901.	1.5	1
18	Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 748, 205-212.	2.6	185

#	Article	IF	CITATIONS
19	Influence mechanisms of Zr and Fe particle additions on the microstructure and mechanical behavior of squeeze-cast 7075Al hybrid composites. Journal of Alloys and Compounds, 2019, 798, 587-596.	2.8	18
20	Processing and mechanical properties of fine grained Al matrix composites reinforced with a uniform dispersion of nanocrystalline high-entropy alloy particles. Journal of Alloys and Compounds, 2019, 801, 473-477.	2.8	34
21	Modulating heterogeneity and plasticity in bulk metallic glasses: Role of interfaces on shear banding. International Journal of Plasticity, 2019, 119, 156-170.	4.1	88
22	Heat Treatable Alâ€Znâ€Mg u Matrix Composites Reinforced With Niâ€Based Metallic Glass Powder. Advanced Engineering Materials, 2019, 21, 1900021.	1.6	2
23	Effect of particle size ratio on microstructure and mechanical properties of aluminum matrix composites reinforced with Zr48Cu36Ag8Al8 metallic glass particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 517-525.	2.6	25
24	Mechanism of shear banding during cold rolling of a bulk metallic glass. Journal of Alloys and Compounds, 2019, 773, 883-889.	2.8	15
25	Powder metallurgy of Al-based composites reinforced with Fe-based glassy particles: Effect of microstructural modification. Particulate Science and Technology, 2019, 37, 286-291.	1.1	14
26	Strengthening of Al-Fe3Al composites by the generation of harmonic structures. Scientific Reports, 2018, 8, 6484.	1.6	14
27	Strain Distribution Across an Individual Shear Band in Real and Simulated Metallic Glasses. Nano Letters, 2018, 18, 1221-1227.	4.5	43
28	The influence of nanocrystalline CoNiFeAl0.4Ti0.6Cr0.5 high-entropy alloy particles addition on microstructure and mechanical properties of SiCp/7075Al composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 726, 126-136.	2.6	70
29	Powder metallurgy of Al-based matrix composites reinforced with quasicrystalline particles. , 2018, , 147-163.		Ο
30	Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 562-570.	2.6	121
31	Microstructure and Mechanical Behavior of Al-Mg Composites Synthesized by Reactive Sintering. Metals, 2018, 8, 762.	1.0	16
32	Additive Manufacturing of a 316L Steel Matrix Composite Reinforced with CeO2 Particles: Process Optimization by Adjusting the Laser Scanning Speed. Technologies, 2018, 6, 25.	3.0	31
33	Ductile bulk metallic glass by controlling structural heterogeneities. Scientific Reports, 2018, 8, 9174.	1.6	42
34	Transient nucleation and microstructural design in flash-annealed bulk metallic glasses. Acta Materialia, 2017, 127, 416-425.	3.8	57
35	Microstructural strengthening by phase transformation in Al-Fe3Al composites. Journal of Alloys and Compounds, 2017, 705, 590-597.	2.8	16
36	Shear band morphology and fracture behavior of cold-rolled Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass under tensile loading. Journal of Alloys and Compounds, 2017, 708, 722-727.	2.8	19

#	Article	IF	CITATIONS
37	Reciprocating sliding wear behavior of high-strength nanocrystalline Al 84 Ni 7 Gd 6 Co 3 alloys. Wear, 2017, 382-383, 78-84.	1.5	14
38	Is the energy density a reliable parameter for materials synthesis by selective laser melting?. Materials Research Letters, 2017, 5, 386-390.	4.1	294
39	Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys. Journal of Alloys and Compounds, 2017, 719, 89-96.	2.8	71
40	Mapping the cyclic plastic zone to elucidate the mechanisms of crack tip deformation in bulk metallic glasses. Applied Physics Letters, 2017, 110, 081903.	1.5	13
41	Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Materialia, 2017, 126, 25-35.	3.8	304
42	Processing a glass-forming Zr-based alloy by selective laser melting. Materials and Design, 2017, 135, 133-141.	3.3	105
43	Influencing the crystallization of Fe80Nb10B10 metallic glass by ball milling. Journal of Alloys and Compounds, 2017, 725, 227-236.	2.8	19
44	Atomic-Level Processes of Shear Band Nucleation in Metallic Glasses. Physical Review Letters, 2017, 119, 195503.	2.9	165
45	Microstructures and properties evolution of spray-deposited Al-Zn-Mg-Cu-Zr alloys with scandium addition. Journal of Alloys and Compounds, 2017, 691, 482-488.	2.8	48
46	Selective laser melting of Al-Zn-Mg-Cu: Heat treatment, microstructure and mechanical properties. Journal of Alloys and Compounds, 2017, 707, 287-290.	2.8	147
47	Additive Manufacturing: Reproducibility of Metallic Parts. Technologies, 2017, 5, 8.	3.0	38
48	Effect of Particle Size on Microstructure and Mechanical Properties of Al-Based Composite Reinforced with 10 Vol.% Mechanically Alloyed Mg-7.4%Al Particles. Technologies, 2016, 4, 37.	3.0	29
49	Tensile Properties of Al-12Si Fabricated via Selective Laser Melting (SLM) at Different Temperatures. Technologies, 2016, 4, 38.	3.0	36
50	Effect of stress concentration on plastic deformation of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass under compressive loading. Materials Letters, 2016, 179, 202-205.	1.3	10
51	Processing of Al–12Si–TNM composites by selective laser melting and evaluation of compressive and wear properties. Journal of Materials Research, 2016, 31, 55-65.	1.2	103
52	Mapping of residual strains around a shear band in bulk metallic glass by nanobeam X-ray diffraction. Acta Materialia, 2016, 111, 187-193.	3.8	47
53	Processing, microstructure and mechanical properties of Al-based metal matrix composites reinforced with mechanically alloyed particles. Journal of Materials Research, 2016, 31, 1229-1236.	1.2	5
54	Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Materialia, 2016, 115, 285-294.	3.8	408

#	Article	IF	CITATIONS
55	Microstructure and mechanical properties of Al-based metal matrix composites reinforced with Al 84 Gd 6 Ni 7 Co 3 glassy particles produced by accumulative roll bonding. Materials and Design, 2016, 90, 137-144.	3.3	38
56	Effect of Milling Time and the Consolidation Process on the Properties of Al Matrix Composites Reinforced with Fe-Based Glassy Particles. Metals, 2015, 5, 669-685.	1.0	25
57	Additive manufacturing of Cu–10Sn bronze. Materials Letters, 2015, 156, 202-204.	1.3	208
58	Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Materials, 2015, 7, e229-e229.	3.8	82
59	Structural features of plastic deformation in bulk metallic glasses. Applied Physics Letters, 2015, 106, .	1.5	24
60	Tensile properties of Al–12Si matrix composites reinforced with Ti–Al-based particles. Journal of Alloys and Compounds, 2015, 630, 256-259.	2.8	45
61	Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Additive Manufacturing, 2015, 6, 1-5.	1.7	120
62	Length scale-dependent structural relaxation in Zr57.5Ti7.5Nb5Cu12.5Ni10Al7.5 metallic glass. Journal of Alloys and Compounds, 2015, 639, 465-469.	2.8	23
63	Al-based matrix composites reinforced with short Fe-based metallic glassy fiber. Journal of Alloys and Compounds, 2015, 651, 170-175.	2.8	33
64	Designed heterogeneities improve the fracture reliability of a Zr-based bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 646, 242-248.	2.6	16
65	Microstructure and mechanical properties of Mg–Al-based alloy modified with cerium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 46-49.	2.6	33
66	Influence of Annealing on Mechanical Properties of Al-20Si Processed by Selective Laser Melting. Metals, 2014, 4, 28-36.	1.0	144
67	Inverse Hall-Petch Like Mechanical Behaviour in Nanophase Al-Cu-Fe Quasicrystals: A New Phenomenon. Acta Physica Polonica A, 2014, 126, 543-548.	0.2	2
68	Deformation at ambient and high temperature of <i>in situ</i> Laves phases-ferrite composites. Science and Technology of Advanced Materials, 2014, 15, 034801.	2.8	11
69	Fabrication and mechanical properties of Al-based metal matrix composites reinforced with Mg65Cu20Zn5Y10 metallic glass particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 53-58.	2.6	82
70	FeCoSiBNbCu bulk metallic glass with large compressive deformability studied by time-resolved synchrotron X-ray diffraction. Journal of Applied Physics, 2014, 115, 053520.	1.1	15
71	Mechanical behavior of Al-based matrix composites reinforced with Mg58Cu28.5Gd11Ag2.5 metallic glasses. Advanced Powder Technology, 2014, 25, 635-639.	2.0	41
72	Al-based metal matrix composites reinforced with Fe49.9Co35.1Nb7.7B4.5Si2.8 glassy powder: Mechanical behavior under tensile loading. Journal of Alloys and Compounds, 2014, 615, S382-S385.	2.8	52

#	Article	IF	CITATIONS
73	Tensile properties of Al matrix composites reinforced with in situ devitrified Al84Gd6Ni7Co3 glassy particles. Journal of Alloys and Compounds, 2014, 586, S419-S422.	2.8	59
74	Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 590, 153-160.	2.6	649
75	High-strength ultrafine grain Mg–7.4%Al alloy synthesized by consolidation of mechanically alloyed powders. Journal of Alloys and Compounds, 2014, 610, 456-461.	2.8	30
76	Effect of ball milling on structure and thermal stability of Al84Gd6Ni7Co3 glassy powders. Intermetallics, 2014, 46, 97-102.	1.8	21
77	Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction. Journal of Alloys and Compounds, 2014, 607, 274-279.	2.8	64
78	Metallic glass–steel composite with improved compressive plasticity. Materials & Design, 2014, 59, 241-245.	5.1	13
79	Porous low modulus Ti40Nb compacts with electrodeposited hydroxyapatite coating for biomedical applications. Materials Science and Engineering C, 2013, 33, 2280-2287.	3.8	30
80	Mechanical Alloying of βâ€₹ype Ti–Nb for Biomedical Applications. Advanced Engineering Materials, 2013, 15, 262-268.	1.6	24
81	Cold sprayed aluminum based glassy coating: Synthesis, wear and corrosion properties. Surface and Coatings Technology, 2013, 232, 33-40.	2.2	56
82	Processing metallic glasses by selective laser melting. Materials Today, 2013, 16, 37-41.	8.3	345
83	Mechanically driven phase transformation in single phase Al62.5Cu25Fe12.5 quasi-crystals: Effect of milling intensity. Acta Materialia, 2013, 61, 3819-3830.	3.8	14
84	Production of customized hybrid porous structures by powder metallurgy of Ni59Zr20Ti16Si2Sn3 glassy powders. Journal of Materials Research, 2013, 28, 2490-2498.	1.2	4
85	Production of Porous β-Type Ti–40Nb Alloy for Biomedical Applications: Comparison of Selective Laser Melting and Hot Pressing. Materials, 2013, 6, 5700-5712.	1.3	77
86	Production and characterization of Al 2024 matrix composites reinforced with β-Al3Mg2 complex metallic alloy particles. Materials Research Society Symposia Proceedings, 2013, 1517, 1.	0.1	2
87	Synthesis and Characterization of NanocrystallineMg-7.4%Al Powders Produced by Mechanical Alloying. Metals, 2013, 3, 58-68.	1.0	22
88	Structural and Mechanical Characterization of Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 Bulk Metallic Glass. Materials, 2012, 5, 1-11.	1.3	10
89	Mechanical behavior of the cold-rolled Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 metallic glass–quasicrystalline composite. International Journal of Materials Research, 2012, 103, 1113-1116.	0.1	2
90	Modeling the strengthening effect of Al–Cu–Fe quasicrystalline particles in Al-based metal matrix composites. Journal of Alloys and Compounds, 2012, 536, S130-S133.	2.8	57

#	Article	IF	CITATIONS
91	Effect of particle dispersion on the mechanical behavior of Al-based metal matrix composites reinforced with nanocrystalline Al–Ca intermetallics. Journal of Alloys and Compounds, 2012, 536, S134-S137.	2.8	31
92	Production and Characterization of Brass-matrix Composites Reinforced with Ni59Zr20Ti16Si2Sn3 Glassy Particles. Metals, 2012, 2, 79-94.	1.0	30
93	Powder metallurgy of high-strength Al90.4Y4.4Ni4.3Co0.9 gas-atomized powder. , 2012, , 1017-1022.		Ο
94	Effect of cold rolling on compressive and tensile mechanical properties of Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass. Journal of Alloys and Compounds, 2011, 509, S128-S130.	2.8	56
95	Significant tensile ductility induced by cold rolling in Cu47.5Zr47.5Al5 bulk metallic glass. Intermetallics, 2011, 19, 1394-1398.	1.8	83
96	Ductile bulk metallic glasses produced through designed heterogeneities. Scripta Materialia, 2011, 65, 815-818.	2.6	76
97	Nanocrystalline metals and alloys prepared by mechanical attrition. , 2011, , 59-84.		1
98	Strain-induced structural transformation of single-phase Al–Cu–Fe icosahedral quasicrystal during mechanical milling. Philosophical Magazine, 2011, 91, 2482-2490.	0.7	23
99	Al-based metal matrix composites reinforced with nanocrystalline Al-Ti-Ni particles. Journal of Physics: Conference Series, 2010, 240, 012154.	0.3	8
100	Mechanical Engineering Properties of CMAs. , 2010, , 273-315.		4
101	Enhanced plastic deformation of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass by the optimization of frictional boundary restraints. Scripta Materialia, 2010, 62, 750-753.	2.6	25
102	Improved Room Temperature Plasticity of Zr _{41.2} Ti _{13.8} Cu _{12.5} Ni ₁₀ Be _{22.5} Bulk Metallic Glass by Channelâ€Đie Compression. Advanced Engineering Materials, 2010, 12, 1123-1126.	1.6	14
103	Mechanical properties of coldâ€rolled Zr ₆₀ Ti ₅ Ag ₅ Cu _{12.5} Ni ₁₀ Al _{7.5} metallic glass. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1118-1121.	0.8	21
104	Crystallization behavior and consolidation of gas-atomized Al84Gd6Ni7Co3 glassy powder. Journal of Alloys and Compounds, 2010, 491, 137-142.	2.8	50
105	Structure and mechanical properties of Al–Mg alloys produced by copper mold casting. Journal of Alloys and Compounds, 2010, 504, S483-S486.	2.8	11
106	Solid-state processing of Al-Mg alloys. Journal of Physics: Conference Series, 2009, 144, 012019.	0.3	10
107	High-strength Al ₈₇ Ni ₈ La ₅ bulk alloy produced by spark plasma sintering of gas atomized powders. Journal of Materials Research, 2009, 24, 2909-2916.	1.2	28
108	Crystallization kinetics of Zr65Ag5Cu12.5Ni10Al7.5 glassy powders produced by ball milling of pre-alloyed ingots. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 513-514, 279-285.	2.6	21

#	Article	IF	CITATIONS
109	Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Materialia, 2009, 57, 2029-2039.	3.8	229
110	Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties. Acta Materialia, 2009, 57, 4529-4538.	3.8	165
111	Consolidation and mechanical properties of ball milled Zr50Cu50 glassy ribbons. Journal of Alloys and Compounds, 2009, 483, 227-230.	2.8	17
112	Mechanical alloying and milling of Al–Mg alloys. Journal of Alloys and Compounds, 2009, 483, 2-7.	2.8	67
113	Crystallization kinetics and consolidation of mechanically alloyed Al70Y16Ni10Co4 glassy powders. Journal of Alloys and Compounds, 2009, 477, 171-177.	2.8	47
114	Viscosity of the supercooled liquid in multi-component Zr-based metallic glasses. Journal of Physics: Conference Series, 2009, 144, 012097.	0.3	12
115	Production and mechanical properties of metallic glass-reinforced Al-based metal matrix composites. Journal of Materials Science, 2008, 43, 4518-4526.	1.7	88
116	Phase transformations in mechanically milled and annealed single-phase β-Al3Mg2. Acta Materialia, 2008, 56, 1136-1143.	3.8	27
117	Inâ€situ Xâ€ray diffraction of mechanically milled βâ€Al ₃ Mg ₂ powders. Physica Status Solidi - Rapid Research Letters, 2008, 2, 272-274.	1.2	4
118	Crystallization behavior and consolidation of ball milled Zr60Ti5Ag5Cu12.5Ni10Al7.5 glassy powders. Journal of Alloys and Compounds, 2008, 456, 159-162.	2.8	3
119	Thermal stability, microstructure and crystallization kinetics of melt-spun Zr-Ti-Cu-Ni metallic glass. Journal of Alloys and Compounds, 2008, 460, 263-267.	2.8	23
120	Consolidation and Mechanical Properties of Mechanically Alloyed Al-Mg Powders. Materials Research Society Symposia Proceedings, 2008, 1128, 54601.	0.1	0
121	Conditions for quasicrystal formation from mechanically alloyed Zr-based glassy powders. Intermetallics, 2007, 15, 571-582.	1.8	26
122	Is a particular quenched-in short-range order necessary for quasicrystal formation from glassy precursors?. Physica Status Solidi (B): Basic Research, 2006, 243, R34-R36.	0.7	0
123	High strength hexagonal structured dendritic phase reinforced Zr–Ti–Ni bulk alloy with enhanced ductility. Applied Physics Letters, 2006, 88, 201920.	1.5	24
124	Nanocrystallization of gas atomized Cu47Ti33Zr11Ni8Si1 metallic glass. Journal of Materials Research, 2006, 21, 597-607.	1.2	14
125	Nanostructured Composite Materials with Improved Deformation Behavior. Advanced Engineering Materials, 2005, 7, 587-596.	1.6	29
126	On the amorphous-to-quasicrystalline phase transformation in ball-milled and melt-spun Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 glassy alloys. Journal of Non-Crystalline Solids, 2005, 351, 856-862.	1.5	9

#	Article	IF	CITATIONS
127	Quasicrystalline phase formation in Zr–Ti–Nb–Cu–Ni–(Al) metallic glasses. Journal of Alloys and Compounds, 2005, 387, 269-273.	2.8	7
128	Possible influence of quenched-in nuclei on quasicrystal formation in mechanically alloyed Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 glassy powder. Journal of Materials Research, 2004, 19, 2211-2215.	1.2	5
129	Polarisation behaviour of the Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 alloy in different microstructural states in acid solutions. Scripta Materialia, 2004, 50, 1379-1384.	2.6	32
130	Formation of quasicrystals in ball-milled amorphous Zr-Ti-Nb-Cu-Ni-Al alloys with different Nb content. Journal of Materials Science, 2004, 39, 5483-5486.	1.7	7
131	H2 absorption in amorphous and nanostructured Zr-based alloys under milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 961-964.	2.6	8
132	Microstructure evolution upon devitrification and crystallization kinetics of Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 melt-spun glassy ribbon. Journal of Applied Physics, 2004, 95, 3397-3403.	1.1	29
133	Quasicrystal formation in mechanically alloyed Zr–Ti–Nb–Cu–Ni–Al glassy powders. Applied Physics Letters, 2004, 85, 4349.	1.5	11
134	Formation of quasicrystals by partial devitrification of ball-milled amorphous Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5. Applied Physics Letters, 2003, 83, 2345-2347.	1.5	18
135	Formation of Quasicrystals in Zr-Ti-Nb-Cu-Ni-Al Melt-Spun and Ball-Milled Multicomponent Alloys. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 67-72.	0.1	1
136	Quasicrystalline Composites by Additive Manufacturing. Key Engineering Materials, 0, 818, 72-76.	0.4	12