Byoung-Mo Koo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11560783/publications.pdf Version: 2024-02-01

RYOUNC-MO KOO

#	Article	IF	CITATIONS
1	Mismatch-CRISPRi Reveals the Co-varying Expression-Fitness Relationships of Essential Genes in Escherichia coli and Bacillus subtilis. Cell Systems, 2020, 11, 523-535.e9.	6.2	72
2	Resistance to serine in <i>Bacillus subtilis</i> : identification of the serine transporter <scp>YbeC</scp> and of a metabolic network that links serine and threonine metabolism. Environmental Microbiology, 2020, 22, 3937-3949.	3.8	16
3	Topoisomerase IV can functionally replace all type 1A topoisomerases in Bacillus subtilis. Nucleic Acids Research, 2019, 47, 5231-5242.	14.5	29
4	Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. Nature Microbiology, 2019, 4, 244-250.	13.3	163
5	Marine Mammal Microbiota Yields Novel Antibiotic with Potent Activity Against <i>Clostridium difficile</i> . ACS Infectious Diseases, 2018, 4, 59-67.	3.8	22
6	Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. Cell Systems, 2017, 4, 291-305.e7.	6.2	457
7	A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. Cell, 2016, 165, 1493-1506.	28.9	593
8	Identification of Two Phosphate Starvation-induced Wall Teichoic Acid Hydrolases Provides First Insights into the Degradative Pathway of a Key Bacterial Cell Wall Component. Journal of Biological Chemistry, 2016, 291, 26066-26082.	3.4	34
9	MurJ and a novel lipid II flippase are required for cell wall biogenesis in <i>Bacillus subtilis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6437-6442.	7.1	166
10	High-throughput bacterial functional genomics in the sequencing era. Current Opinion in Microbiology, 2015, 27, 86-95.	5.1	35
11	Convergence of the Transcriptional Responses to Heat Shock and Singlet Oxygen Stresses. PLoS Genetics, 2012, 8, e1002929.	3.5	42
12	A mammalian insulysin homolog is regulated by enzyme IIA ^{Glc} of the glucose transport system in <i>Vibrio vulnificus</i> . FEBS Letters, 2010, 584, 4537-4544.	2.8	13
13	Reduced capacity of alternative ${\rm i} f$ s to melt promoters ensures stringent promoter recognition. Genes and Development, 2009, 23, 2426-2436.	5.9	42
14	Dissection of recognition determinants of <i>Escherichia coli</i> σ ³² suggests a composite â°'10 region with an †extended â ''10' motif and a core â ''10 element. Molecular Microbiology, 2009, 72, 815-829.	2.5	44
15	Mutational analysis of <i>Escherichia coli</i> Ïf ²⁸ and its target promoters reveals recognition of a composite â^'10 region, comprised of an †extended â^'10' motif and a core â^'10 element. Molecular Microbiology, 2009, 72, 830-843.	2.5	33
16	Requirement of the dephosphoâ€form of enzyme IIA ^{Ntr} for derepression of <i>Escherichia coli</i> Kâ€12 <i>ilvBN</i> expression. Molecular Microbiology, 2005, 58, 334-344.	2.5	49
17	A Novel Fermentation/Respiration Switch Protein Regulated by Enzyme IIAGlc in Escherichia coli. Journal of Biological Chemistry, 2004, 279, 31613-31621.	3.4	56
18	Topography of the Surface of theEscherichia coliPhosphotransferase System Protein Enzyme IIAglcthat Interacts with Lactose Permease. Biochemistry, 2000, 39, 2931-2939.	2.5	12