Alexis Markovits

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11560473/publications.pdf

Version: 2024-02-01

687363 642732 26 543 13 23 citations h-index g-index papers 27 27 27 811 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Comparison of the reduction of metal oxide surfaces: TiO2-anatase, TiO2-rutile and SnO2-rutile. Surface Science, 2005, 583, 107-117.	1.9	110
2	A theoretical study of CO2 adsorption on TiO2. Computational and Theoretical Chemistry, 1996, 371, 219-235.	1.5	76
3	A theoretical analysis of NH3 adsorption on TiO2. Surface Science, 1996, 365, 649-661.	1.9	75
4	Modeling Localized Photoinduced Electrons in Rutile-TiO ₂ Using Periodic DFT+U Methodology. Langmuir, 2010, 26, 16232-16238.	3.5	36
5	Triethylamine on Si(001)-(2 \tilde{A} — 1) at 300 K: Molecular Adsorption and Site Configurations Leading to Dissociation. Journal of Physical Chemistry C, 2012, 116, 16473-16486.	3.1	26
6	FS+ and FS+(OHâ^') defect centers at the MgO(100) surface: cluster and periodic calculations. Surface Science, 2004, 549, 294-304.	1.9	24
7	Theoretical Study of the Acetonitrile Flip-Flop with the Electric Field Orientation: Adsorption on a Pt(111) Electrode Surface. Catalysis Letters, 2003, 91, 225-234.	2.6	20
8	First Row Transition Metal Atom Adsorption on Defect-Free MgO(100) Surface. Journal of Physical Chemistry C, 2007, 111, 6781-6788.	3.1	20
9	Theoretical Study of the TiO2 and MgO Surface Acidity and the Adsorption of Acids and Bases. Molecular Engineering, 1997, 7, 245-261.	0.2	19
10	Adsorption of the first row of transition metals on the perfect and defective MgO(100) surface. Chemical Physics Letters, 2008, 463, $106-111$.	2.6	17
11	First-row transition metal atoms adsorption on rutile TiO2(110) surface. Structural Chemistry, 2012, 23, 1309-1321.	2.0	17
12	CO dissociation on magnetic Fe _{<i>n</i>} clusters. Physical Chemistry Chemical Physics, 2014, 16, 20703-20713.	2.8	16
13	Coadsorption of Gold with Hydrogen or Potassium on TiO2(110) Surface. Journal of Physical Chemistry C, 2008, 112, 14010-14014.	3.1	13
14	First Row Transition Metal Atom Adsorption On-Top of F° _s Defects of a MgO(100) Surface. Journal of Physical Chemistry C, 2008, 112, 16491-16496.	3.1	13
15	Core restructuring for magnetic Fe55 icosahedral nanoparticles. Chemical Physics Letters, 2012, 541, 101-104.	2.6	10
16	Ab initio periodic pseudopotential Hartree-Fock calculations of O2 dissociation on perfect Si(100) surface. Journal of Molecular Catalysis A, 1997, 119, 185-193.	4.8	7
17	Ab initio study of the optical transitions on low-coordinated sites of an intermediate F center: The Fs+(OH)â^' center on MgO(100) surface. Solid State Ionics, 2007, 178, 173-178.	2.7	7
18	Exploring CO dissociation on Fe nanoparticles by density functional theory-based methods: Fe13 as a case study. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	7

#	Article	IF	CITATIONS
19	Support effect on H adsorption on a metal atom. Chemical Physics Letters, 2013, 565, 45-51.	2.6	6
20	Improved convergence of rutile-TiO2(110) slab properties with thickness by one-side saturation. Chemical Physics Letters, 2012, 531, 90-93.	2.6	5
21	Metal atom adsorption on a defective TiO2–x support. Chemical Physics Letters, 2014, 594, 23-29.	2.6	5
22	Hartree–Fock study of the Si(l00) reconstruction. Computational and Theoretical Chemistry, 1998, 458, 171-189.	1.5	4
23	Reactivity of transition metal atoms supported or not on TiO2(110) toward CO and H adsorption. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	4
24	Increased CO adsorption on supported VIB and IB metals. Chemical Physics Letters, 2009, 475, 215-219.	2.6	2
25	Theoretical Study of the TiO2 and MgO Surface Acidity and the Adsorption of Acids and Bases. Topics in Molecular Organization and Engineering, 1997, , 245-261.	0.1	2
26	Peculiar adsorption induced by strong hydrogen bonds on perfect anatase (0 0 1) surface. Applied Surface Science, 2022, 594, 153397.	6.1	2