
Romer A Gonzalez-Villalobos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11560462/publications.pdf Version: 2024-02-01

Romer A

#	Article	IF	CITATIONS
1	Novel roles of the renal angiotensin-converting enzyme. Molecular and Cellular Endocrinology, 2021, 529, 111257.	3.2	20
2	Structure-function relationships of the soluble form of the antiaging protein Klotho have therapeutic implications for managing kidney disease. Journal of Biological Chemistry, 2020, 295, 3115-3133.	3.4	16
3	Renal tubular ACE-mediated tubular injury is the major contributor to microalbuminuria in early diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2018, 314, F531-F542.	2.7	29
4	The Absence of the ACE N-Domain Decreases Renal Inflammation and Facilitates Sodium Excretion during Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 2546-2561.	6.1	30
5	Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils. Blood, 2017, 130, 328-339.	1.4	68
6	Renal tubular angiotensin converting enzyme isÂresponsible for nitro-L-arginine methyl esterÂ(L-NAME)-induced salt sensitivity. Kidney International, 2017, 91, 856-867.	5.2	12
7	Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response. F1000Research, 2016, 5, 393.	1.6	7
8	The intrarenal generation of angiotensin II is required for experimental hypertension. Current Opinion in Pharmacology, 2015, 21, 73-81.	3.5	14
9	Salt Sensitivity in Response to Renal Injury Requires Renal Angiotensin-Converting Enzyme. Hypertension, 2015, 66, 534-542.	2.7	22
10	Renal Angiotensin-Converting Enzyme Is Essential for the Hypertension Induced by Nitric Oxide Synthesis Inhibition. Journal of the American Society of Nephrology: JASN, 2014, 25, 2752-2763.	6.1	48
11	Angiotensin-converting enzyme overexpression in myelocytes enhances the immune response. Biological Chemistry, 2014, 395, 1173-1178.	2.5	17
12	Renal angiotensin-converting enzyme and blood pressure control. Current Opinion in Nephrology and Hypertension, 2014, 23, 106-112.	2.0	38
13	Renal Generation of Angiotensin II and the Pathogenesis of Hypertension. Current Hypertension Reports, 2014, 16, 477.	3.5	26
14	ACE Overexpression in Myelomonocytic Cells: Effect on a Mouse Model of Alzheimer's Disease. Current Hypertension Reports, 2014, 16, 444.	3.5	12
15	Rediscovering ACE: novel insights into the many roles of the angiotensin-converting enzyme. Journal of Molecular Medicine, 2013, 91, 1143-1154.	3.9	48
16	Angiotensin II Type 1 Receptor–associated Protein. Hypertension, 2013, 61, 1150-1152.	2.7	1
17	A Modern Understanding of the Traditional and Nontraditional Biological Functions of Angiotensin-Converting Enzyme. Pharmacological Reviews, 2013, 65, 1-46.	16.0	240
18	The absence of intrarenal ACE protects against hypertension. Journal of Clinical Investigation, 2013, 123, 2011-2023.	8.2	176

Romer A

#	Article	IF	CITATIONS
19	An important role of renal angiotensinâ€converting enzyme in the development of saltâ€sensitivity during renal parenchyma inflammation. FASEB Journal, 2013, 27, 909.8.	0.5	1
20	Increased Angiotensin II–Induced Hypertension and Inflammatory Cytokines in Mice Lacking Angiotensin-Converting Enzyme N Domain Activity. Hypertension, 2012, 59, 283-290.	2.7	13
21	The Increasing Complexity of the Intratubular Renin-Angiotensin System. Journal of the American Society of Nephrology: JASN, 2012, 23, 1130-1132.	6.1	22
22	Interferonâ€Î³ biphasically regulates angiotensinogen expression <i>via</i> a JAKâ€STAT pathway and suppressor of cytokine signaling 1 (SOCS1) in renal proximal tubular cells. FASEB Journal, 2012, 26, 1821-1830.	0.5	63
23	Nontraditional Roles of Angiotensin-Converting Enzyme. Hypertension, 2012, 59, 763-768.	2.7	15
24	JAK-STAT and the renin-angiotensin system. Jak-stat, 2012, 1, 250-256.	2.2	32
25	Stimulation of renal sodium transporters' abundance and phosphorylation during chronic angiotensin II (AII) infusion requires intrarenal AII formation. FASEB Journal, 2012, 26, 1105.8.	0.5	0
26	Natural Regulatory T Cells Control Coronary Arteriolar Endothelial Dysfunction in Hypertensive Mice. American Journal of Pathology, 2011, 178, 434-441.	3.8	109
27	Different in vivo functions of the two catalytic domains of angiotensin-converting enzyme (ACE). Current Opinion in Pharmacology, 2011, 11, 105-111.	3.5	70
28	Intrarenal Angiotensin-Converting Enzyme Induces Hypertension in Response to Angiotensin I Infusion. Journal of the American Society of Nephrology: JASN, 2011, 22, 449-459.	6.1	54
29	Intratubular Renin-Angiotensin System in Hypertension. Hypertension, 2011, 57, 355-362.	2.7	199
30	Reciprocal changes in renal ACE/ANG II and ACE2/ANG 1–7 are associated with enhanced collecting duct renin in Goldblatt hypertensive rats. American Journal of Physiology - Renal Physiology, 2011, 300, F749-F755.	2.7	61
31	Comments on Point:Counterpoint: The dominant contributor to systemic hypertension: Chronic activation of the sympathetic nervous system vs. Activation of the intrarenal renin-angiotensin system. Journal of Applied Physiology, 2010, 109, 2003-2014.	2.5	3
32	Intrarenal mouse renin-angiotensin system during ANG II-induced hypertension and ACE inhibition. American Journal of Physiology - Renal Physiology, 2010, 298, F150-F157.	2.7	62
33	Kidney microRNA expression profile in Ang Ilâ€dependent Hypertension. FASEB Journal, 2010, 24, 605.13.	0.5	0
34	Angiotensin-Converting Enzyme–Derived Angiotensin II Formation During Angiotensin II–Induced Hypertension. Hypertension, 2009, 53, 351-355.	2.7	50
35	IL-6 augments angiotensinogen in primary cultured renal proximal tubular cells. Molecular and Cellular Endocrinology, 2009, 311, 24-31.	3.2	49

Romer A

#	Article	IF	CITATIONS
37	Elevated Epidermal Growth Factor Receptor Phosphorylation Induces Resistance Artery Dysfunction in Diabetic <i>db/db</i> Mice. Diabetes, 2008, 57, 1629-1637.	0.6	94
38	Intrarenal angiotensin II and angiotensinogen augmentation in chronic angiotensin II-infused mice. American Journal of Physiology - Renal Physiology, 2008, 295, F772-F779.	2.7	102
39	Costimulation with angiotensin II and interleukin 6 augments angiotensinogen expression in cultured human renal proximal tubular cells. American Journal of Physiology - Renal Physiology, 2008, 295, F283-F289.	2.7	62
40	Role of Advanced Glycation End Products With Oxidative Stress in Resistance Artery Dysfunction in Type 2 Diabetic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1432-1438.	2.4	81
41	Diamagnetic levitation changes growth, cell cycle, and gene expression ofSaccharomyces cerevisiae. Biotechnology and Bioengineering, 2007, 98, 854-863.	3.3	46
42	Haploid deletion strains of Saccharomyces cerevisiae that determine survival during space flight. Acta Astronautica, 2007, 60, 460-471.	3.2	10