Jia-Tao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1155870/publications.pdf

Version: 2024-02-01

152 papers	10,418 citations	41344 49 h-index	98 g-index
155	155	155	11382
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Orderly defective superstructure for enhanced pseudocapacitive storage in titanium niobium oxide. Nano Research, 2022, 15, 1570-1578.	10.4	24
2	Ru-Co-Mn trimetallic alloy nanocatalyst driving bifunctional redox electrocatalysis. Science China Materials, 2022, 65, 131-138.	6.3	16
3	RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Research, 2022, 15, 1959-1965.	10.4	23
4	Doping transition metal in PdSeO3 atomic layers by aqueous cation exchange: A new doping protocol for a new 2D photocatalyst. Chinese Chemical Letters, 2022, 33, 3739-3744.	9.0	5
5	A self-healing zinc ion battery under -20 °C. Energy Storage Materials, 2022, 44, 517-526.	18.0	53
6	Computational Studies of Coinage Metal Anion Mâ^' + CH3X (X = F, Cl, Br, I) Reactions in Gas Phase. Molecules, 2022, 27, 307.	3.8	3
7	Bi/Zn Dual Singleâ€Atom Catalysts for Electroreduction of CO ₂ to Syngas. ChemCatChem, 2022, 14, .	3.7	37
8	Synergistically Modulating Geometry and Electronic Structures of a Chalcogenide Photocatalyst via an Ion-Exchange Strategy. Journal of Physical Chemistry Letters, 2022, 13, 969-976.	4.6	5
9	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie, 2022, 134, .	2.0	27
10	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2022, 61, .	13.8	127
11	Synthesis of multicomponent colloidal nanoparticles. , 2022, , .		O
12	A Flexible Aqueous Zinc–lodine Microbattery with Unprecedented Energy Density. Advanced Materials, 2022, 34, e2109450.	21.0	49
13	Telluride Nanocrystals with Adjustable Amorphous Shell Thickness and Core–Shell Structure Modulation by Aqueous Cation Exchange. Inorganic Chemistry, 2022, 61, 3989-3996.	4.0	7
14	Fe-Functionalized î±-Fe ₂ O ₃ /ZnO Nanocages for ppb-Level Acetone Gas Sensing. ACS Applied Nano Materials, 2022, 5, 5745-5755.	5.0	10
15	Simultaneous harnessing of hot electrons and hot holes achieved via n-metal-p Janus plasmonic heteronanocrystals. Nano Energy, 2022, 98, 107217.	16.0	26
16	Integrating Amorphous Molybdenum Sulfide Nanosheets with a Co ₉ S ₈ @Ni ₃ S ₂ Array as an Efficient Electrocatalyst for Overall Water Splitting. Langmuir, 2022, 38, 3469-3479.	3.5	21
17	Theoretical Predictions, Experimental Modulation Strategies, and Applications of MXeneâ€Supported Atomically Dispersed Metal Sites. Small, 2022, 18, e2105883.	10.0	28
18	Atomically Surficial Modulation in Two-Dimensional Semiconductor Nanocrystals for Selective Photocatalytic Reactions. Frontiers in Chemistry, 2022, 10, 890287.	3.6	1

#	Article	IF	Citations
19	Telluride semiconductor nanocrystals: progress on their liquid-phase synthesis and applications. Rare Metals, 2022, 41, 2527-2551.	7.1	10
20	Pure Aqueous Planar Microsupercapacitors with Ultrahigh Energy Density under Wide Temperature Ranges. Advanced Functional Materials, 2022, 32, .	14.9	17
21	Construction of Plasmonic Metal@Semiconductor Core–Shell Photocatalysts: From Epitaxial to Nonepitaxial Strategies. Small Structures, 2022, 3, .	12.0	13
22	Synergetic Dualâ€Atom Catalysts: The Next Boom of Atomic Catalysts. ChemSusChem, 2022, 15, .	6.8	31
23	Microreactor platform for continuous synthesis of electronic doped quantum dots. Nano Research, 2022, 15, 9647-9653.	10.4	5
24	Stretchable supercapacitor at \hat{a}^3 \hat{A}^6 C. Energy and Environmental Science, 2021, 14, 3075-3085.	30.8	114
25	Stable quantum dots/polymer matrix and their versatile 3D printing frameworks. Journal of Materials Chemistry C, 2021, 9, 7194-7199.	5.5	8
26	Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano, 2021, 15, 2005-2037.	14.6	148
27	Cation Exchange Enabled Cu Dopants Location Tailoring and Photoelectric Properties Regulation in CdS Nanosheets. Journal of Physical Chemistry Letters, 2021, 12, 3976-3982.	4.6	5
28	Dopant Diffusion Equilibrium Overcoming Impurity Loss of Doped QDs for Multimode Antiâ€Counterfeiting and Encryption. Advanced Functional Materials, 2021, 31, 2100286.	14.9	31
29	Defect Engineering in 2D Photocatalytic Materials for CO ₂ Reduction. ChemNanoMat, 2021, 7, 737-747.	2.8	9
30	Intrinsic and Extrinsic Exciton Recombination Pathways in AgInS ₂ Colloidal Nanocrystals. Energy Material Advances, 2021, 2021, .	11.0	15
31	Hybrid Plasmonic Nanodumbbells Engineering for Multi-Intensified Second Near-Infrared Light Induced Photodynamic Therapy. ACS Nano, 2021, 15, 8694-8705.	14.6	59
32	Luminescent Cu doped CdTe nanocrystals via cation exchange of Cu7Te5 nanocubes: From undoped to doped emission. Progress in Natural Science: Materials International, 2021, 31, 398-403.	4.4	2
33	An Aqueous Antiâ€Freezing and Heatâ€Folerant Symmetric Microsupercapacitor with 2.3ÂV Output Voltage. Advanced Energy Materials, 2021, 11, 2101523.	19.5	28
34	Two-Dimensional All-in-One Sulfide Monolayers Driving Photocatalytic Overall Water Splitting. Nano Letters, 2021, 21, 6228-6236.	9.1	88
35	Shell Thickness Dependence of the Plasmon-Induced Hot-Electron Injection Process in Au@CdS Core–Shell Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 19906-19913.	3.1	12
36	Surface-Enhanced Raman Scattering Quantitative Analysis of Ethanol Drop-Coating Silver Nanocubes on Gold Film. Journal of Nanoscience and Nanotechnology, 2021, 21, 4715-4725.	0.9	1

#	Article	IF	CITATIONS
37	Visually resolving the direct Z-scheme heterojunction in CdS@Znln2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water. Applied Catalysis B: Environmental, 2021, 293, 120213.	20.2	123
38	Atomically dispersed Ru in Pt ₃ Sn intermetallic alloy as an efficient methanol oxidation electrocatalyst. Chemical Communications, 2021, 57, 2164-2167.	4.1	14
39	Positively charged collective oscillations induce efficient Aβ1–42 fibril degradation in the presence of novel Au@Cu _{2â^²x} S core/shell nanorods. Chemical Communications, 2021, 57, 6384-6387.	4.1	9
40	Revealing the effect of interfacial electron transfer in heterostructured Co ₉ S ₈ @NiFe LDH for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 12244-12254.	10.3	52
41	A telluride shell on plasmonic Au nanoparticles: amorphous/crystalline phase and shape evolution engineering <i>via</i> aqueous cation exchange. Materials Chemistry Frontiers, 2021, 5, 4571-4578.	5.9	8
42	Ultrafine PtRu Dilute Alloy Nanodendrites for Enhanced Electrocatalytic Methanol Oxidation. Chemistry - A European Journal, 2020, 26, 4025-4031.	3.3	19
43	Oxygen vacancy engineering of self-doped SnO _{2â^'x} nanocrystals for ultrasensitive NO ₂ detection. Journal of Materials Chemistry C, 2020, 8, 487-494.	5.5	76
44	Colloidal Cd _{<i>x</i>} M _{1â€"<i>x</i>} Te Nanowires from the Visible to the Near Infrared Region: <i>N</i> , <i>N</i> .Dimethylformamide-Mediated Precise Cation Exchange. Journal of Physical Chemistry Letters, 2020, 11, 7-13.	4.6	9
45	Colloidal Synthesis of Giant Shell PbSe-Based Core/Shell Quantum Dots in Polar Solvent: Cation Exchange versus Epitaxial Growth. Chemistry of Materials, 2020, 32, 6650-6656.	6.7	7
46	Discovery of main group single Sb–N ₄ active sites for CO ₂ electroreduction to formate with high efficiency. Energy and Environmental Science, 2020, 13, 2856-2863.	30.8	245
47	Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nature Communications, 2020, 11, 5884.	12.8	174
48	Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nature Communications, 2020, 11 , 6185 .	12.8	93
49	Colloidal semiconductor nanocrystals for biological photodynamic therapy applications: Recent progress and perspectives. Progress in Natural Science: Materials International, 2020, 30, 443-455.	4.4	17
50	Design of a Singleâ€Atom Indium ^{δ+} –N ₄ Interface for Efficient Electroreduction of CO ₂ to Formate. Angewandte Chemie - International Edition, 2020, 59, 22465-22469.	13.8	232
51	Design of a Singleâ€Atom Indium Î'+ –N 4 Interface for Efficient Electroreduction of CO 2 to Formate. Angewandte Chemie, 2020, 132, 22651-22655.	2.0	29
52	Unique Cation Exchange in Nanocrystal Matrix via Surface Vacancy Engineering Overcoming Chemical Kinetic Energy Barriers. CheM, 2020, 6, 3086-3099.	11.7	18
53	Oxygen Defects in Nanostructured <scp>Metalâ€Oxide</scp> Gas Sensors: Recent Advances and Challenges ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1832-1846.	4.9	34
54	Phase transformation of PiMoCo and their electrocatalytic activity for oxygen evolution reaction. CrystEngComm, 2020, 22, 6003-6009.	2.6	1

#	Article	IF	Citations
55	Engineering a metal–organic framework derived Mn–N ₄ –C _x S _y atomic interface for highly efficient oxygen reduction reaction. Chemical Science, 2020, 11, 5994-5999.	7.4	113
56	Surface passivation enabled-structural engineering of I-III-VI ₂ nanocrystal photocatalysts. Journal of Materials Chemistry A, 2020, 8, 9951-9962.	10.3	12
57	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11, 3049.	12.8	537
58	Engineering Isolated Mn–N ₂ C ₂ Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction. Nano Letters, 2020, 20, 5443-5450.	9.1	249
59	Femtosecond laser mediated fabrication of micro/nanostructured TiO2- photoelectrodes: Hierarchical nanotubes array with oxygen vacancies and their photocatalysis properties. Applied Catalysis B: Environmental, 2020, 277, 119231.	20.2	33
60	Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Research, 2020, 13, 1842-1855.	10.4	532
61	Cation/Anion Exchange Reactions toward the Syntheses of Upgraded Nanostructures: Principles and Applications. Matter, 2020, 2, 554-586.	10.0	81
62	Controlled Synthesis of Co@N-Doped Carbon by Pyrolysis of ZIF with 2-Aminobenzimidazole Ligand for Enhancing Oxygen Reduction Reaction and the Application in Znâ€"Air Battery. ACS Applied Materials & amp; Interfaces, 2020, 12, 11693-11701.	8.0	54
63	Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chemical Reviews, 2020, 120, 2123-2170.	47.7	206
64	Layered Assembly of Silver Nanocubes/Polyelectrolyte/Gold Film as an Efficient Substrate for Surface-Enhanced Raman Scattering. ACS Applied Nano Materials, 2020, 3, 1934-1941.	5.0	12
65	Atomic-dispersed platinum anchored on porous alumina sheets as an efficient catalyst for diboration of alkynes. Chemical Communications, 2020, 56, 3127-3130.	4.1	17
66	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution by Plasmonic Au/CdSe–Cu ₂ O Hierarchical Nanostructures under Visible Light. Small, 2020, 16, e2000426.	10.0	53
67	Atomically thin PdSeO ₃ nanosheets: a promising 2D photocatalyst produced by quaternary ammonium intercalation and exfoliation. Chemical Communications, 2020, 56, 5504-5507.	4.1	23
68	Micro-scale 2D quasi-nanosheets formed by 0D nanocrystals: from single to multicomponent building blocks. Science China Materials, 2020, 63, 1265-1271.	6.3	10
69	From core-shell to yolk-shell: Keeping the intimately contacted interface for plasmonic metal@semiconductor nanorods toward enhanced near-infrared photoelectrochemical performance. Nano Research, 2020, 13, 1162-1170.	10.4	25
70	In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal–Organic Frameworks to Design Atomic Co ₁ –P ₁ N ₃ Interfacial Structure for Promoting Catalytic Performance. Journal of the American Chemical Society, 2020, 142, 8431-8439.	13.7	259
71	Amorphous molybdenum sulfide nanocatalysts simultaneously realizing efficient upgrading of residue and synergistic synthesis of 2D MoS ₂ nanosheets/carbon hierarchical structures. Green Chemistry, 2020, 22, 44-53.	9.0	102
72	Recent Advances in Platinum-based Intermetallic Nanocrystals: Controlled Synthesis and Electrocatalytic Applications. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	17

#	Article	IF	CITATIONS
73	Evolution of Hollow CuInS ₂ Nanododecahedrons via Kirkendall Effect Driven by Cation Exchange for Efficient Solar Water Splitting. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27170-27177.	8.0	40
74	Bismuth Single Atoms Resulting from Transformation of Metal–Organic Frameworks and Their Use as Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16569-16573.	13.7	501
75	High-Performance Quantum Dots with Synergistic Doping and Oxide Shell Protection Synthesized by Cation Exchange Conversion of Ternary-Composition Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 2606-2615.	4.6	17
76	Synthesis of M-doped (M = Ag, Cu, In) Bi $<$ sub $>$ 2 $<$ /sub $>$ Te $<$ sub $>$ 3 $<$ /sub $>$ nanoplates $<$ i $>via</i>0 a solvothermal method and cation exchange reaction. Inorganic Chemistry Frontiers, 2019, 6, 1097-1102.$	6.0	22
77	Hydrophilic Doped Quantum Dots "Ink―and Their Inkjetâ€Printed Patterns for Dual Mode Anticounterfeiting by Reversible Cation Exchange Mechanism. Advanced Functional Materials, 2019, 29, 1808762.	14.9	63
78	Compressive surface strained atomic-layer Cu2O on Cu@Ag nanoparticles. Nano Research, 2019, 12, 1187-1192.	10.4	21
79	Hollow anisotropic semiconductor nanoprisms with highly crystalline frameworks for high-efficiency photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 8061-8072.	10.3	16
80	Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Research, 2019, 12, 1375-1379.	10.4	16
81	Efficient Plasmonic Au/CdSe Nanodumbbell for Photoelectrochemical Hydrogen Generation beyond Visible Region. Advanced Energy Materials, 2019, 9, 1803889.	19.5	85
82	Two-dimensional CdX (X = Se, Te) nanosheets: controlled synthesis and their photoluminescence properties. Journal of Materials Chemistry C, 2019, 7 , 13849-13858.	5.5	3
83	Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy and Environmental Science, 2019, 12, 3508-3514.	30.8	278
84	Electronic doping-enabled transition from n- to p-type conductivity over Au@CdS core–shell nanocrystals toward unassisted photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 23038-23045.	10.3	42
85	Semiconductor Nanocrystal Engineering by Applying Thiol―and Solventâ€Coordinated Cation Exchange Kinetics. Angewandte Chemie - International Edition, 2019, 58, 4852-4857.	13.8	29
86	Semiconductor Nanocrystal Engineering by Applying Thiol―and Solventâ€Coordinated Cation Exchange Kinetics. Angewandte Chemie, 2019, 131, 4906-4911.	2.0	8
87	Controllable Synthesis of Nanosized Amorphous MoS <i>_x</i> Using Temporally Shaped Femtosecond Laser for Highly Efficient Electrochemical Hydrogen Production. Advanced Functional Materials, 2019, 29, 1806229.	14.9	54
88	Au@HgxCd1-xTe core@shell nanorods by sequential aqueous cation exchange for near-infrared photodetectors. Nano Energy, 2019, 57, 57-65.	16.0	38
89	Perovskite nanocrystals: across-dimensional attachment, film-scale assembly on a flexible substrate and their fluorescence properties. Nanotechnology, 2018, 29, 125606.	2.6	6
90	Colloidâ€Interfaceâ€Assisted Laser Irradiation of Nanocrystals Superlattices to be Scalable Plasmonic Superstructures with Novel Activities. Small, 2018, 14, e1703501.	10.0	10

#	Article	IF	CITATIONS
91	Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. Nature Nanotechnology, 2018, 13, 145-151.	31.5	64
92	Nanoclusterâ€Mediated Synthesis of Diverse ZnTe Nanostructures: from Nanocrystals to 1D Nanobelts. Chemistry - A European Journal, 2018, 24, 2999-3004.	3.3	5
93	Cu x O self-assembled mesoporous microspheres with effective surface oxygen vacancy and their room temperature NO2 gas sensing performance. Science China Materials, 2018, 61, 1085-1094.	6.3	24
94	Metal@semiconductor core-shell nanocrystals with atomically organized interfaces for efficient hot electron-mediated photocatalysis. Nano Energy, 2018, 48, 44-52.	16.0	118
95	Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries. Nano Research, 2018, 11, 1563-1574.	10.4	30
96	Cu-enhanced photoelectronic and ethanol sensing properties of Cu ₂ O/Cu nanocrystals prepared by one-step controllable synthesis. Inorganic Chemistry Frontiers, 2018, 5, 425-431.	6.0	6
97	Hydrothermal Cation Exchange Enabled Gradual Evolution of Au@ZnS–AgAuS Yolk–Shell Nanocrystals and Their Visible Light Photocatalytic Applications. Advanced Science, 2018, 5, 1700376.	11.2	64
98	Porous platinum–silver bimetallic alloys: surface composition and strain tunability toward enhanced electrocatalysis. Nanoscale, 2018, 10, 21703-21711.	5.6	20
99	Nearâ€Infrared Luminescent Ternary Ag ₃ SbS ₃ Quantum Dots by in situ Conversion of Ag Nanocrystals with Sb(C ₉ H ₁₉ COOS) ₃ . Chemistry - A European Journal, 2018, 24, 18643-18647.	3.3	5
100	High Pressure Induced in Situ Solid-State Phase Transformation of Nonepitaxial Grown Metal@Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 6544-6549.	4.6	5
101	Noble Metal-Based Nanocomposites for Fuel Cells. , 2018, , .		4
102	Metal@I ₂ â€"Ilâ€"IVâ€"VI ₄ coreâ€"shell nanocrystals: controlled synthesis by aqueous cation exchange for efficient photoelectrochemical hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 11898-11908.	10.3	20
103	Redox shuttle enhances nonthermal femtosecond two-photon self-doping of rGO–TiO _{2â^'x} photocatalysts under visible light. Journal of Materials Chemistry A, 2018, 6, 16430-16438.	10.3	27
104	Hydrothermal One-Step Synthesis of Highly Dispersed M-Phase VO ₂ Nanocrystals and Application to Flexible Thermochromic Film. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28627-28634.	8.0	56
105	From Indiumâ€Doped Ag ₂ S to AgInS ₂ Nanocrystals: Lowâ€Temperature In Situ Conversion of Colloidal Ag ₂ S Nanoparticles and Their NIR Fluorescence. Chemistry - A European Journal, 2018, 24, 13676-13680.	3.3	20
106	Sharp-featured Au@Ag core/shell nanocuboid synthesis and the label-free ultrasensitive SERS detection of protein single-point mutations. Materials Chemistry Frontiers, 2018, 2, 1720-1724.	5.9	6
107	Synthesis of edge-site selectively deposited Au nanocrystals on TiO2 nanosheets: An efficient heterogeneous catalyst with enhanced visible-light photoactivity. Electrochimica Acta, 2018, 283, 1095-1104.	5.2	41
108	Cu nanocrystal enhancement of C ₃ N ₄ /Cu hetero-structures and new applications in photo-electronic catalysis: hydrazine oxidation and redox reactions of organic molecules. Inorganic Chemistry Frontiers, 2018, 5, 2420-2424.	6.0	9

#	Article	IF	Citations
109	Phosphine ligand-mediated kinetics manipulation of aqueous cation exchange: a case study on the synthesis of Au@SnS _x core–shell nanocrystals for photoelectrochemical water splitting. Chemical Communications, 2018, 54, 9993-9996.	4.1	19
110	Assembly-promoted photocatalysis: Three-dimensional assembly of CdS x Se 1â°'x (xÂ=Â0â€"1) quantum dots into nanospheres with enhanced photocatalytic performance. Journal of Materiomics, 2017, 3, 63-70.	5.7	3
111	A flexible conductive film prepared by the oriented stacking of Ag and Au/Ag alloy nanoplates and its chemically roughened surface for explosive SERS detection and cell adhesion. RSC Advances, 2017, 7, 7073-7078.	3.6	28
112	Controlled Synthesis and Flexible Self-Assembly of Monodisperse Au@Semiconductor Core/Shell Hetero-Nanocrystals into Diverse Superstructures. Chemistry of Materials, 2017, 29, 2355-2363.	6.7	33
113	Versatile synthesis of yolk/shell hybrid nanocrystals via ion-exchange reactions for novel metal/semiconductor and semiconductor/semiconductor conformations. Nano Research, 2017, 10, 2977-2987.	10.4	32
114	Good Dispersion of Large-Stokes-Shift Heterovalent-Doped CdX Quantum Dots into Bulk PMMA Matrix and Their Optical Properties Characterization. Journal of Physical Chemistry C, 2017, 121, 6152-6159.	3.1	22
115	Nature-Inspired Na ₂ Ti ₃ O ₇ Nanosheets-Formed Three-Dimensional Microflowers Architecture as a High-Performance Anode Material for Rechargeable Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11669-11677.	8.0	103
116	Ultrathin single-crystalline TiO2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application. Journal of Power Sources, 2017, 342, 405-413.	7.8	60
117	Heterovalent Doping in Colloidal Semiconductor Nanocrystals: Cation-Exchange-Enabled New Accesses to Tuning Dopant Luminescence and Electronic Impurities. Journal of Physical Chemistry Letters, 2017, 8, 4943-4953.	4.6	59
118	Wet-Phase Synthesis of Typical Magnetic Nanoparticles with Controlled Morphologies., 2017,, 291-326.		1
119	Editorial for rare metals, special issue on nanomaterials and rechargeable battery applications. Rare Metals, 2017, 36, 305-306.	7.1	2
120	Boron-doped microporous nano carbon as cathode material for high-performance Li-S batteries. Nano Research, 2017, 10, 426-436.	10.4	42
121	Yolk / Shell Nanocrystals: A Novel Approach To Catalysis and Drug Release. , 2017, , .		0
122	Structurally Wellâ€Defined Au@Cu _{2â^'} <i>_x</i> S Coreâ€"Shell Nanocrystals for Improved Cancer Treatment Based on Enhanced Photothermal Efficiency. Advanced Materials, 2016, 28, 3094-3101.	21.0	228
123	Hierarchical Self-Assembly of Cu ₇ Te ₅ Nanorods into Superstructures with Enhanced SERS Performance. ACS Applied Materials & SERS Performance. ACS Applied Materials & SERS Performance.	8.0	15
124	Aqueous phase synthesis of $Au@Ag < sub > 3 < / sub > AuX < sub > 2 < / sub > (X = Se, Te) core/shell nanocrystals and their broad NIR photothermal conversion application. CrystEngComm, 2016, 18, 5418-5422.$	2.6	18
125	Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Research, 2016, 9, 1763-1774.	10.4	57
126	Siteâ€Specific Growth of Au on CdS <i>_x</i> Se _{1â^'} <i>_x</i> Yields Anisotropic Heteronanocrystals with Enhanced Photocatalysis Performance. Particle and Particle Systems Characterization, 2016, 33, 512-518.	2.3	2

#	Article	IF	CITATIONS
127	Surface micro/nanostructure evolution of Au–Ag alloy nanoplates: Synthesis, simulation, plasmonic photothermal and surface-enhanced Raman scattering applications. Nano Research, 2016, 9, 876-885.	10.4	43
128	Plasmon enhanced photoelectrochemical sensing of mercury (II) ions in human serum based on Au@Ag nanorods modified TiO2 nanosheets film. Biosensors and Bioelectronics, 2016, 79, 866-873.	10.1	60
129	Ternary cooperative Au–CdS–rGO hetero-nanostructures: synthesis with multi-interface control and their photoelectrochemical sensor applications. RSC Advances, 2016, 6, 30785-30790.	3.6	11
130	Aqueous oxidation reaction enabled layer-by-layer corrosion of semiconductor nanoplates into single-crystalline 2D nanocrystals with single layer accuracy and ionic surface capping. Chemical Communications, 2016, 52, 3426-3429.	4.1	5
131	Cation coordination reactions on nanocrystals: surface/interface, doping control and advanced photocatalysis applications (Conference Presentation). , 2016, , .		0
132	From Cu2S nanocrystals to Cu doped CdS nanocrystals through cation exchange: controlled synthesis, optical properties and their p-type conductivity research. Science China Materials, 2015, 58, 693-703.	6.3	23
133	Bambooâ€Like Nitrogenâ€Doped Carbon Nanotubes with Co Nanoparticles Encapsulated at the Tips: Uniform and Largeâ€Scale Synthesis and Highâ€Performance Electrocatalysts for Oxygen Reduction. Chemistry - A European Journal, 2015, 21, 14022-14029.	3.3	74
134	Phosphineâ€Initiated Cation Exchange for Precisely Tailoring Composition and Properties of Semiconductor Nanostructures: Old Concept, New Applications. Angewandte Chemie - International Edition, 2015, 54, 3683-3687.	13.8	51
135	Core@shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction. Nano Research, 2015, 8, 271-280.	10.4	30
136	Oriented attachment of nanoparticles to form micrometer-sized nanosheets/nanobelts by topotactic reaction on rigid/flexible substrates with improved electronic properties. NPG Asia Materials, 2015, 7, e152-e152.	7.9	23
137	Heterovalentâ€Dopingâ€Enabled Efficient Dopant Luminescence and Controllable Electronic Impurity Via a New Strategy of Preparing Ilâ^'VI Nanocrystals. Advanced Materials, 2015, 27, 2753-2761.	21.0	67
138	Engineering Acoustic Phonons and Electron–Phonon Coupling by the Nanoscale Interface. Nano Letters, 2015, 15, 6282-6288.	9.1	31
139	Rigid three-dimensional Ni ₃ S ₄ nanosheet frames: controlled synthesis and their enhanced electrochemical performance. RSC Advances, 2015, 5, 8422-8426.	3.6	70
140	Controlling Structural Symmetry of a Hybrid Nanostructure and its Effect on Efficient Photocatalytic Hydrogen Evolution. Advanced Materials, 2014, 26, 1387-1392.	21.0	142
141	P-type Cu ₇ Te ₅ single-crystalline nanocuboids: size-controlled synthesis and large-scale self-assembly. CrystEngComm, 2014, 16, 9441-9445.	2.6	5
142	A facile strategy to prepare monodisperse nanocrystals with initiative assembly into superlattice. Progress in Natural Science: Materials International, 2013, 23, 588-592.	4.4	6
143	Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature, 2010, 466, 91-95.	27.8	242
144	Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches. Science, 2010, 327, 1634-1638.	12.6	514

#	Article	IF	CITATIONS
145	Versatile Strategy for Precisely Tailored Core@Shell Nanostructures with Single Shell Layer Accuracy: The Case of Metallic Shell. Nano Letters, 2009, 9, 4061-4065. Synthesis and Crystal Structures of the Ligandâ€Stabilized Silver Chalcogenide Clusters	9.1	76
146	[Ág ₁₅₄ Se ₇₇ (dppxy) ₁₈], [Ag ₃₂₀ (S <i>t</i> Bu) ₆₀ S ₁₃₀ (dppp) ₁₂], [Ag ₃₅₂ S ₁₂₈ (S <i>t</i> C ₅ H ₁₁) ₉₆], and [Ag ₄₉₀ S ₁₈₈ (S <i>t</i> C ₅ H ₁₁) ₁₁₄].	13.8	241
147	Angewandte Chemie - International Edition, 2008, 47, 1326-1331. Hollow core photonic crystal fiber surface-enhanced Raman probe. Applied Physics Letters, 2006, 89, 204101.	3.3	113
148	Nearly Monodisperse Cu2O and CuO Nanospheres:Â Preparation and Applications for Sensitive Gas Sensors. Chemistry of Materials, 2006, 18, 867-871.	6.7	1,053
149	Surface Enhanced Raman Scattering Effects of Silver Colloids with Different Shapes. Journal of Physical Chemistry B, 2005, 109, 12544-12548.	2.6	359
150	Optical and electrical properties of carbon nitride films deposited by cathode electrodeposition. Journal of Materials Science, 2003, 38, 2559-2562.	3.7	5
151	Formation of crystalline carbon nitride powder by a mild solvothermal method. Journal of Materials Chemistry, 2003, 13, 1241.	6.7	91
152	Precisely Controllable Synthesized Nanoparticles for Surface Enhanced Raman Spectroscopy., 0,,.		2