Daniel M Durall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1155851/publications.pdf

Version: 2024-02-01

414414 361413 13,946 31 20 32 citations h-index g-index papers 33 33 33 16537 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An indigenous Saccharomyces uvarum population with high genetic diversity dominates uninoculated Chardonnay fermentations at a Canadian winery. PLoS ONE, 2021, 16, e0225615.	2.5	10
2	Unique volatile chemical profiles produced by indigenous and commercial strains of <i>Saccharomyces uvarum</i> and <i>Saccharomyces cerevisiae</i> during laboratory-scale Chardonnay fermentations. Oeno One, 2021, 55, 101-122.	1.4	2
3	Glycosidically-Bound Volatile Phenols Linked to Smoke Taint: Stability during Fermentation with Different Yeasts and in Finished Wine. Molecules, 2021, 26, 4519.	3.8	4
4	Competition between <i>Saccharomyces cerevisiae</i> and <i>Saccharomyces uvarum</i> in Controlled Chardonnay Wine Fermentations. American Journal of Enology and Viticulture, 2020, 71, 198-207.	1.7	21
5	Resilience of Rhizopogon-Douglas-fir mycorrhizal networks 25Âyears after selective logging. Mycorrhiza, 2020, 30, 467-474.	2.8	4
6	Effect of sulfite addition and <i>pied de cuve</i> inoculation on the microbial communities and sensory profiles of Chardonnay wines: dominance of indigenous <i>Saccharomyces uvarum</i> at a commercial winery. FEMS Yeast Research, 2019, 19, .	2.3	30
7	Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37, 852-857.	17.5	11,167
8	Response to Sulfur Dioxide Addition by Two Commercial Saccharomyces cerevisiae Strains. Fermentation, 2019, 5, 69.	3.0	14
9	The effect of sulfur dioxide addition at crush on the fungal and bacterial communities and the sensory attributes of Pinot gris wines. International Journal of Food Microbiology, 2019, 290, 1-14.	4.7	34
10	Sulfur dioxide addition at crush alters Saccharomyces cerevisiae strain composition in spontaneous fermentations at two Canadian wineries. International Journal of Food Microbiology, 2017, 244, 96-102.	4.7	29
11	A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. Mycorrhiza, 2017, 27, 831-839.	2.8	32
12	The Interaction of Two Saccharomyces cerevisiae Strains Affects Fermentation-Derived Compounds in Wine. Fermentation, $2016, 2, 9$.	3.0	7
13	Competitive avoidance not edaphic specialization drives vertical niche partitioning among sister species of ectomycorrhizal fungi. New Phytologist, 2016, 209, 1174-1183.	7.3	43
14	The use of propidium monoazide in conjunction with qPCR and Illumina sequencing to identify and quantify live yeasts and bacteria. International Journal of Food Microbiology, 2016, 234, 53-59.	4.7	22
15	Dominance of a Rhizopogon sister species corresponds to forest age structure. Mycorrhiza, 2016, 26, 169-175.	2.8	8
16	Topology of tree–mycorrhizal fungus interaction networks in xeric and mesic Douglasâ€fir forests. Journal of Ecology, 2015, 103, 616-628.	4.0	40
17	Development and use of a quantum dot probe to track multiple yeast strains in mixed culture. Scientific Reports, 2015, 4, 6971.	3.3	8
18	Implantation and persistence of yeast inoculum in Pinot noir fermentations at three Canadian wineries. International Journal of Food Microbiology, 2014, 180, 56-61.	4.7	18

#	Article	IF	CITATIONS
19	Vertical partitioning between sister species of <i><scp>R</scp>hizopogon</i> fungi on mesic and xeric sites in an interior <scp>D</scp> ouglasâ€fir forest. Molecular Ecology, 2012, 21, 6163-6174.	3.9	19
20	Architecture of the woodâ€wide web: <i>Rhizopogon</i> spp. genets link multiple Douglasâ€fir cohorts. New Phytologist, 2010, 185, 543-553.	7.3	172
21	Functional complementarity of Douglasâ€fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Functional Ecology, 2010, 24, 1139-1151.	3.6	82
22	Net carbon transfer between <i>Pseudotsuga menziesii</i> var. <i>glauca</i> seedlings in the field is influenced by soil disturbance. Journal of Ecology, 2010, 98, 429-439.	4.0	67
23	Influence of soil nutrients on ectomycorrhizal communities in a chronosequence of mixed temperate forests. Mycorrhiza, 2009, 19, 305-316.	2.8	51
24	Location relative to a retention patch affects the ECM fungal community more than patch size in the first season after timber harvesting on Vancouver Island, British Columbia. Forest Ecology and Management, 2008, 255, 1342-1352.	3.2	42
25	Ectomycorrhizal fungal succession in mixed temperate forests. New Phytologist, 2007, 176, 437-447.	7.3	286
26	Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers. Mycorrhiza, 2006, 17, 51-65.	2.8	54
27	Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytologist, 2003, 157, 399-422.	7.3	288
28	Chemical and mechanical site preparation: effects on Pinus contorta growth, physiology, and microsite quality on grassy, steep forest sites in British Columbia. Canadian Journal of Forest Research, 2003, 33, 1495-1515.	1.7	47
29	Net transfer of carbon between ectomycorrhizal tree species in the field. Nature, 1997, 388, 579-582.	27.8	784
30	Title is missing!. Plant and Soil, 1997, 191, 41-55.	3.7	66
31	Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytologist, 1997, 137, 529-542.	7.3	85