
John G Watson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11557949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air quality studies. Atmospheric Environment Part A General Topics, 1993, 27, 1185-1201.	1.3	1,008
2	Visibility: Science and Regulation. Journal of the Air and Waste Management Association, 2002, 52, 628-713.	1.9	844
3	Comparison of IMPROVE and NIOSH Carbon Measurements. Aerosol Science and Technology, 2001, 34, 23-34.	3.1	810
4	The IMPROVE_A Temperature Protocol for Thermal/Optical Carbon Analysis: Maintaining Consistency with a Long-Term Database. Journal of the Air and Waste Management Association, 2007, 57, 1014-1023.	1.9	656
5	Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols. Environmental Science & Technology, 2004, 38, 4414-4422.	10.0	604
6	Fine Particle and Gaseous Emission Rates from Residential Wood Combustion. Environmental Science & Technology, 2000, 34, 2080-2091.	10.0	519
7	PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere, 2001, 43, 1141-1151.	8.2	519
8	Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmospheric Environment, 1996, 30, 2079-2112.	4.1	517
9	Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere, 2004, 54, 185-208.	8.2	447
10	Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment, 2001, 35, 1567-1584.	4.1	443
11	Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmospheric Environment, 1994, 28, 2061-2080.	4.1	417
12	Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmospheric Environment, 2004, 38, 4447-4456.	4.1	390
13	Winter and Summer PM _{2.5} Chemical Compositions in Fourteen Chinese Cities. Journal of the Air and Waste Management Association, 2012, 62, 1214-1226.	1.9	350
14	The effective variance weighting for least squares calculations applied to the mass balance receptor model. Atmospheric Environment, 1984, 18, 1347-1355.	1.0	315
15	Summary of Organic and Elemental Carbon/Black Carbon Analysis Methods and Intercomparisons. Aerosol and Air Quality Research, 2005, 5, 65-102.	2.1	304
16	Impacts of aerosol compositions on visibility impairment in Xi'an, China. Atmospheric Environment, 2012, 59, 559-566.	4.1	271
17	Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC. Chemosphere, 2007, 69, 569-574.	8.2	249
18	Mass reconstruction methods for PM2.5: a review. Air Quality, Atmosphere and Health, 2015, 8, 243-263.	3.3	245

#	Article	IF	CITATIONS
19	Review of PM2.5 and PM10 Apportionment for Fossil Fuel Combustion and Other Sources by the Chemical Mass Balance Receptor Model. Energy & Fuels, 2002, 16, 222-260.	5.1	240
20	Receptor modeling application framework for particle source apportionment. Chemosphere, 2002, 49, 1093-1136.	8.2	238
21	Health Effects of Fine Particulate Air Pollution: Lines that Connect. Journal of the Air and Waste Management Association, 2006, 56, 1368-1380.	1.9	227
22	Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources. Atmospheric Environment, 2015, 109, 178-189.	4.1	217
23	Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border. Science of the Total Environment, 2001, 276, 33-47.	8.0	205
24	Source Apportionment: Findings from the U.S. Supersites Program. Journal of the Air and Waste Management Association, 2008, 58, 265-288.	1.9	202
25	Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmospheric Environment, 2003, 37, 1023-1032.	4.1	194
26	Chemical Mass Balance Source Apportionment of PM10during the Southern California Air Quality Study. Aerosol Science and Technology, 1994, 21, 1-36.	3.1	192
27	Emissions from Laboratory Combustion of Wildland Fuels:Â Emission Factors and Source Profiles. Environmental Science & Technology, 2007, 41, 4317-4325.	10.0	192
28	Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. Science of the Total Environment, 2002, 287, 177-201.	8.0	191
29	PM10and PM2.5Compositions in California's San Joaquin Valley. Aerosol Science and Technology, 1993, 18, 105-128.	3.1	181
30	Monitoring of particulate matter outdoors. Chemosphere, 2002, 49, 1009-1043.	8.2	179
31	Black carbon relationships with emissions and meteorology in Xi'an, China. Atmospheric Research, 2009, 94, 194-202.	4.1	172
32	PM10 source apportionment in California's San Joaquin valley. Atmospheric Environment Part A General Topics, 1992, 26, 3335-3354.	1.3	150
33	A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions. Atmospheric Environment, 1994, 28, 3463-3481.	4.1	149
34	Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels. Atmospheric Environment, 2011, 45, 1359-1363.	4.1	149
35	Fossil and contemporary fine particulate carbon fractions at 12 rural and urban sites in the United States. Journal of Geophysical Research, 2008, 113, .	3.3	147
36	Characterization of heavy-duty diesel vehicle emissions. Atmospheric Environment, 1994, 28, 731-743.	4.1	144

#	Article	IF	CITATIONS
37	Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. Journal of Geophysical Research, 2007, 112, .	3.3	144
38	Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. Atmospheric Environment, 2009, 43, 6343-6351.	4.1	139
39	Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples. Journal of Chromatography A, 2008, 1200, 217-227.	3.7	133
40	Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon. Analytical and Bioanalytical Chemistry, 2011, 401, 3141-3152.	3.7	133
41	Similarities and differences in PM10 chemical source profiles for geological dust from the San Joaquin Valley, California. Atmospheric Environment, 2003, 37, 1317-1340.	4.1	131
42	The application of thermal methods for determining chemical composition of carbonaceous aerosols: A review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 1521-1541.	1.7	131
43	PM2.5chemical composition and spatiotemporal variability during the California Regional PM10/PM2.5Air Quality Study (CRPAQS). Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	129
44	Quantifying PM2.5Source Contributions for the San Joaquin Valley with Multivariate Receptor Models. Environmental Science & amp; Technology, 2007, 41, 2818-2826.	10.0	129
45	Seasonal characteristics and regional transport of PM in Hong Kong. Atmospheric Environment, 2005, 39, 1695-1695.	4.1	124
46	Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology, 2009, 7, 161-168.	3.6	124
47	Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California. Atmospheric Research, 2009, 93, 874-887.	4.1	123
48	Inter-annual variability of wintertime PM 2.5 chemical composition in Xi'an, China: Evidences of changing source emissions. Science of the Total Environment, 2016, 545-546, 546-555.	8.0	118
49	Characterization of airborne carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance. Journal of Geophysical Research, 2005, 110, .	3.3	117
50	Emissions from Charbroiling and Grilling of Chicken and Beef. Journal of the Air and Waste Management Association, 2003, 53, 185-194.	1.9	116
51	Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmospheric Environment, 2015, 123, 399-406.	4.1	114
52	A wintertime PM2.5 episode at the Fresno, CA, supersite. Atmospheric Environment, 2002, 36, 465-475.	4.1	113
53	Methods to Assess Carbonaceous Aerosol Sampling Artifacts for IMPROVE and Other Long-Term Networks. Journal of the Air and Waste Management Association, 2009, 59, 898-911.	1.9	112
54	PM2.5 source profiles for black and organic carbon emission inventories. Atmospheric Environment, 2011, 45, 5407-5414.	4.1	111

#	Article	IF	CITATIONS
55	PM2.5 carbonate concentrations at regionally representative Interagency Monitoring of Protected Visual Environment sites. Journal of Geophysical Research, 2002, 107, ICC 6-1-ICC 6-9.	3.3	109
56	PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology, 2015, 18, 96-104.	3.6	109
57	PM2.5 chemical composition in Hong Kong: urban and regional variations. Science of the Total Environment, 2005, 338, 267-281.	8.0	108
58	Seasonal variations and mass closure analysis of particulate matter in Hong Kong. Science of the Total Environment, 2006, 355, 276-287.	8.0	102
59	Evaluation of OC/EC Speciation by Thermal Manganese Dioxide Oxidation and the IMPROVE Method. Journal of the Air and Waste Management Association, 2002, 52, 1333-1341.	1.9	101
60	Will the Circle Be Unbroken: A History of the U.S. National Ambient Air Quality Standards. Journal of the Air and Waste Management Association, 2007, 57, 1151-1163.	1.9	100
61	Loss of PM _{2.5} Nitrate from Filter Samples in Central California. Journal of the Air and Waste Management Association, 2005, 55, 1158-1168.	1.9	99
62	Remote sensing of PM, NO, CO and HC emission factors for on-road gasoline and diesel engine vehicles in Las Vegas, NV. Science of the Total Environment, 2004, 322, 123-137.	8.0	93
63	Correlation ofin VitroCytokine Responses with the Chemical Composition of Soil-Derived Particulate Matter. Environmental Health Perspectives, 2006, 114, 341-349.	6.0	93
64	Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments. Chemosphere, 2007, 69, 526-533.	8.2	93
65	Characterization of Roadside Fine Particulate Carbon and its Eight Fractions in Hong Kong. Aerosol and Air Quality Research, 2006, 6, 106-122.	2.1	93
66	Advances in Integrated and Continuous Measurements for Particle Mass and Chemical Composition. Journal of the Air and Waste Management Association, 2008, 58, 141-163.	1.9	91
67	Receptor model and emissions inventory source apportionments of nonmethane organic gases in California's San Joaquin valley and San Francisco bay area. Atmospheric Environment, 1995, 29, 3019-3035.	4.1	88
68	Comparison of Continuous and Filter-Based Carbon Measurements at the Fresno Supersite. Journal of the Air and Waste Management Association, 2006, 56, 474-491.	1.9	86
69	Sources and chemistry of PM10 aerosol in Santa Barbara County, CA. Atmospheric Environment, 1996, 30, 1489-1499.	4.1	85
70	Validation of the Chemical Mass Balance Receptor Model Applied to Hydrocarbon Source Apportionment in the Southern California Air Quality Study. Environmental Science & Technology, 1994, 28, 1633-1649.	10.0	84
71	Designing monitoring networks to represent outdoor human exposure. Chemosphere, 2002, 49, 961-978.	8.2	82
72	Sensitivity of estimated light extinction coefficients to model assumptions and measurement errors. Atmospheric Environment, 1995, 29, 751-766.	4.1	76

#	Article	IF	CITATIONS
73	Comparison and evaluation of in situ and filter carbon measurements at the Fresno Supersite. Journal of Geophysical Research, 2002, 107, ICC 3-1-ICC 3-15.	3.3	74
74	Precautions for in-injection port thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) as applied to aerosol filter samples. Atmospheric Environment, 2011, 45, 1491-1496.	4.1	74
75	Black and Organic Carbon Emission Inventories: Review and Application to California. Journal of the Air and Waste Management Association, 2010, 60, 497-507.	1.9	72
76	Air Quality Measurements from the Fresno Supersite. Journal of the Air and Waste Management Association, 2000, 50, 1321-1334.	1.9	71
77	PM10 measurements at McMurdo Station, Antarctica. Atmospheric Environment, 2001, 35, 1891-1902.	4.1	71
78	Modeling reflectance and transmittance of quartz-fiber filter samples containing elemental carbon particles: Implications for thermal/optical analysis. Journal of Aerosol Science, 2004, 35, 765-780.	3.8	70
79	Ammonium Nitrate, Nitric Acid, and Ammonia Equilibrium in Wintertime Phoenix, Arizona. Journal of the Air and Waste Management Association, 1994, 44, 405-412.	0.6	66
80	Comparison of PM2.5 carbon measurement methods in Hong Kong, China. Environmental Pollution, 2005, 137, 334-344.	7.5	64
81	Analysis of PM _{2.5} and PM ₁₀ in the Atmosphere of Mexico City during 2000-2002. Journal of the Air and Waste Management Association, 2004, 54, 786-798.	1.9	63
82	Chemical mass balance source apportionment for combined PM2.5 measurements from U.S. non-urban and urban long-term networksâ~†. Atmospheric Environment, 2010, 44, 4908-4918.	4.1	61
83	Characteristics of fine particulate non-polar organic compounds in Guangzhou during the 16th Asian Games: Effectiveness of air pollution controls. Atmospheric Environment, 2013, 76, 94-101.	4.1	61
84	Evaluation of filter-based aerosol measurements during the 1987 Southern California Air Quality Study. Environmental Monitoring and Assessment, 1994, 30, 49-80.	2.7	60
85	Visibility: Science and Regulation. Journal of the Air and Waste Management Association, 2002, 52, 973-999.	1.9	60
86	Multi-year trend in fine and coarse particle mass, carbon, and ions in downtown Tokyo, Japan. Atmospheric Environment, 2006, 40, 2478-2487.	4.1	58
87	Characteristics of carbonaceous particles from residential coal combustion and agricultural biomass burning in China. Atmospheric Pollution Research, 2017, 8, 521-527.	3.8	58
88	Funeral Pyres in South Asia: Brown Carbon Aerosol Emissions and Climate Impacts. Environmental Science and Technology Letters, 2014, 1, 44-48.	8.7	57
89	Characterization of PM _{2.5} and PM ₁₀ fugitive dust source profiles in the Athabasca Oil Sands Region. Journal of the Air and Waste Management Association, 2015, 65, 1421-1433.	1.9	57
90	Cross-border transport and spatial variability of suspended particles in Mexicali and California's Imperial Valley. Atmospheric Environment, 2000, 34, 1833-1843.	4.1	55

#	Article	IF	CITATIONS
91	Characterization and seasonal variations of levoglucosan in fine particulate matter in Xi'an, China. Journal of the Air and Waste Management Association, 2014, 64, 1317-1327.	1.9	55
92	Separation of brown carbon from black carbon for IMPROVE and Chemical Speciation Network PM _{2.5} samples. Journal of the Air and Waste Management Association, 2018, 68, 494-510.	1.9	54
93	Evaluation of 1047-nm Photoacoustic Instruments and Photoelectric Aerosol Sensors in Source-Sampling of Black Carbon Aerosol and Particle-Bound PAHs from Gasoline and Diesel Powered Vehicles. Environmental Science & Technology, 2005, 39, 5398-5406.	10.0	53
94	A neighborhood-scale study of PM10 source contributions in Rubidoux, California. Atmospheric Environment Part A General Topics, 1992, 26, 693-706.	1.3	51
95	Air pollution effects on fetal and child development: A cohort comparison in China. Environmental Pollution, 2014, 185, 90-96.	7.5	51
96	Determination of real-world emission factors of trace metals, EC, OC, BTEX, and semivolatile organic compounds (PAHs, PCBs and PCNs) in a rural tunnel in Bilecik, Turkey. Science of the Total Environment, 2018, 643, 1285-1296.	8.0	51
97	Spatial Differences in Outdoor PM ₁₀ Mass and Aerosol Composition in Mexico City. Journal of the Air and Waste Management Association, 2002, 52, 423-434.	1.9	50
98	PM2.5 emissions and source profiles from open burning of crop residues. Atmospheric Environment, 2017, 169, 229-237.	4.1	50
99	Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level. Analytical and Bioanalytical Chemistry, 2011, 401, 3153-3164.	3.7	49
100	Particle emissions from laboratory combustion of wildland fuels: In situ optical and mass measurements. Geophysical Research Letters, 2006, 33, .	4.0	48
101	Nanoparticle and Ultrafine Particle Events at the Fresno Supersite. Journal of the Air and Waste Management Association, 2006, 56, 417-430.	1.9	48
102	PM2.5and PM10Mass Measurements in California's San Joaquin Valley. Aerosol Science and Technology, 2006, 40, 796-810.	3.1	48
103	Effects of Snow Cover and Atmospheric Stability on Winter PM2.5 Concentrations in Western U.S. Valleys. Journal of Applied Meteorology and Climatology, 2015, 54, 1191-1201.	1.5	48
104	Soil sample collection and analysis for the Fugitive Dust Characterization Study. Atmospheric Environment, 2003, 37, 1163-1173.	4.1	46
105	Chemical Mass Balance. Data Handling in Science and Technology, 1991, , 83-116.	3.1	45
106	Comparability between PM2.5 and particle light scattering measurements. Environmental Monitoring and Assessment, 2002, 79, 29-45.	2.7	45
107	Particulate carbon measurements in California's San Joaquin Valley. Chemosphere, 2006, 62, 337-348.	8.2	45
108	Toward Effective Source Apportionment Using Positive Matrix Factorization: Experiments with Simulated PM _{2.5} Data. Journal of the Air and Waste Management Association, 2010, 60, 43-54.	1.9	45

#	Article	IF	CITATIONS
109	Filter Processing and Gravimetric Analysis for Suspended Particulate Matter Samples. Aerosol Science and Engineering, 2017, 1, 93-105.	1.9	45
110	Reference Material 8785: Air Particulate Matter on Filter Media. Aerosol Science and Technology, 2005, 39, 173-183.	3.1	44
111	Multi-wavelength light absorption of black and brown carbon at a high-altitude site on the Southeastern margin of the Tibetan Plateau, China. Atmospheric Environment, 2019, 212, 54-64.	4.1	43
112	Temporal Variations of PM _{2.5} , PM ₁₀ , and Gaseous Precursors during the 1995 Integrated Monitoring Study in Central California. Journal of the Air and Waste Management Association, 1999, 49, 16-24.	1.9	42
113	Chapter one: exposure measurements. Chemosphere, 2002, 49, 873-901.	8.2	41
114	Exposure to PM2.5 and PAHs from the Tong Liang, China Epidemiological Study. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 517-542.	1.7	41
115	Coarse particle (PM10–2.5) source profiles for emissions from domestic cooking and industrial process in Central India. Science of the Total Environment, 2018, 627, 1137-1145.	8.0	41
116	Estimating Middle-, Neighborhood-, and Urban-Scale Contributions to Elemental Carbon in Mexico City with a Rapid Response Aethalometer. Journal of the Air and Waste Management Association, 2001, 51, 1522-1528.	1.9	40
117	Correlation between automotive CO, HC, NO, and PM emission factors from on-road remote sensing: implications for inspection and maintenance programs. Transportation Research, Part D: Transport and Environment, 2004, 9, 477-496.	6.8	40
118	Sources of PM10 and sulfate aerosol at McMurdo station, Antarctica. Chemosphere, 2001, 45, 347-356.	8.2	39
119	On-Road Measurement of Automotive Particle Emissions by Ultraviolet Lidar and Transmissometer:Â Instrument. Environmental Science & Technology, 2003, 37, 4971-4978.	10.0	39
120	PM2.5 and PM10 concentrations from the Qalabotjha low-smoke fuels macro-scale experiment in South Africa. Environmental Monitoring and Assessment, 2001, 69, 1-15.	2.7	36
121	The comparison of source contributions from residential coal and low-smoke fuels, using CMB modeling, in South Africa. Environmental Science and Policy, 2002, 5, 157-167.	4.9	35
122	Season and size of urban particulate matter differentially affect cytotoxicity and human immune responses to Mycobacterium tuberculosis. PLoS ONE, 2019, 14, e0219122.	2.5	35
123	Comparison of four scanning mobility particle sizers at the Fresno Supersite. Particuology, 2011, 9, 204-209.	3.6	34
124	Variations of nanoparticle concentrations at the Fresno Supersite. Science of the Total Environment, 2006, 358, 178-187.	8.0	33
125	Comparison of Particle Light Scattering and Fine Particulate Matter Mass in Central California. Journal of the Air and Waste Management Association, 2006, 56, 398-410.	1.9	33
126	Size-resolved aerosol chemical concentrations at rural and urban sites in Central California, USA. Atmospheric Research, 2008, 90, 243-252.	4.1	33

#	Article	IF	CITATIONS
127	PM _{2.5} Source Apportionment: Reconciling Receptor Models for U.S. Nonurban and Urban Long-Term Networks. Journal of the Air and Waste Management Association, 2011, 61, 1204-1217.	1.9	33
128	Chemical speciation of aerosols and air quality degradation during the festival of lights (Diwali). Atmospheric Pollution Research, 2016, 7, 92-99.	3.8	33
129	Aerosol emissions factors from traditional biomass cookstoves in India: insights from field measurements. Atmospheric Chemistry and Physics, 2017, 17, 13721-13729.	4.9	33
130	Spatial and temporal variations of particulate precursor gases and photochemical reaction products during SJVAQS/AUSPEX ozone episodes. Atmospheric Environment, 1998, 32, 2835-2844.	4.1	32
131	Particulate emission factors for mobile fossil fuel and biomass combustion sources. Science of the Total Environment, 2011, 409, 2384-2396.	8.0	32
132	Considerations for design of source apportionment studies. Atmospheric Environment, 1984, 18, 1567-1582.	1.0	31
133	Particle Size Relationships at the Fresno Supersite. Journal of the Air and Waste Management Association, 2002, 52, 822-827.	1.9	29
134	Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area. Atmospheric Research, 2016, 170, 112-122.	4.1	29
135	Cytotoxicity of PM2.5 vehicular emissions in the Shing Mun Tunnel, Hong Kong. Environmental Pollution, 2020, 263, 114386.	7.5	29
136	Dilution-Based Emissions Sampling from Stationary Sources: Part 2—Gas-Fired Combustors Compared with Other Fuel-Fired Systems. Journal of the Air and Waste Management Association, 2007, 57, 79-93.	1.9	27
137	PM _{2.5} source apportionment with organic markers in the Southeastern Aerosol Research and Characterization (SEARCH) study. Journal of the Air and Waste Management Association, 2015, 65, 1104-1118.	1.9	27
138	Source apportionment of urban air pollutants using constrained receptor models with a priori profile information. Environmental Pollution, 2017, 227, 323-333.	7.5	27
139	Zones of representation for PM10 measurements along the US/Mexico border. Science of the Total Environment, 2001, 276, 49-68.	8.0	26
140	Filter Light Attenuation as a Surrogate for Elemental Carbon. Journal of the Air and Waste Management Association, 2010, 60, 1365-1375.	1.9	26
141	Gaseous, PM _{2.5} mass, and speciated emission factors from laboratory chamber peat combustion. Atmospheric Chemistry and Physics, 2019, 19, 14173-14193.	4.9	26
142	The Effect of Sampling Inlets on the PM-10 and PM-15 to TSP Concentration Ratios. Journal of the Air Pollution Control Association, 1983, 33, 114-119.	0.5	25
143	Simulating Changes in Source Profiles from Coal-Fired Power Stations:  Use in Chemical Mass Balance of PM2.5 in the Mount Zirkel Wilderness. Energy & Fuels, 2002, 16, 311-324.	5.1	25
144	Characterization of Fine Particulate Emissions from Casting Processes. Aerosol Science and Technology, 2005, 39, 947-959.	3.1	25

#	Article	IF	CITATIONS
145	Aerosol chemical composition and light scattering in Portland, Oregon: The role of carbon. Atmospheric Environment, 1984, 18, 235-240.	1.0	24
146	Hong Kong vehicle emission changes from 2003 to 2015 in the Shing Mun Tunnel. Aerosol Science and Technology, 2018, 52, 1085-1098.	3.1	24
147	The effects of collinearity on the ability to determine aerosol contributions from diesel- and gasoline-powered vehicles using the Chemical Mass Balance model. Atmospheric Environment Part A General Topics, 1992, 26, 2341-2351.	1.3	23
148	Continuous and filter-based measurements of PM2.5 nitrate and sulfate at the Fresno Supersite. Environmental Monitoring and Assessment, 2008, 144, 179-189.	2.7	23
149	The optical properties of urban aerosol in northern China: A case study at Xi'an. Atmospheric Research, 2015, 160, 59-67.	4.1	22
150	Public health and components of particulate matter: The changing assessment of black carbon. Journal of the Air and Waste Management Association, 2014, 64, 1221-1231.	1.9	21
151	Enhanced Ion Chromatographic Speciation of Water-Soluble PM\$\$_{2.5}\$\$ to Improve Aerosol Source Apportionment. Aerosol Science and Engineering, 2017, 1, 7-24.	1.9	21
152	Wildfire and prescribed burning impacts on air quality in the United States. Journal of the Air and Waste Management Association, 2020, 70, 961-970.	1.9	21
153	Size and Geographical Variation in PM1, PM2.5and PM10: Source Profiles from Soils in the Western United States. Water, Air, and Soil Pollution, 2004, 157, 13-31.	2.4	20
154	Polycyclic aromatic compounds (PAHs, oxygenated PAHs, nitrated PAHs, and azaarenes) in air from four climate zones of China: Occurrence, gas/particle partitioning, and health risks. Science of the Total Environment, 2021, 786, 147234.	8.0	20
155	Contributions to light extinction during project MOHAVE. Atmospheric Environment, 2000, 34, 2351-2359.	4.1	19
156	Estimating aerosol light scattering at the Fresno Supersite. Atmospheric Environment, 2008, 42, 1186-1196.	4.1	19
157	Ambient Particulate Matter Air Pollution in Mpererwe District, Kampala, Uganda: A Pilot Study. Journal of Environmental and Public Health, 2014, 2014, 1-7.	0.9	19
158	Brownness of Organic Aerosol over the United States: Evidence for Seasonal Biomass Burning and Photobleaching Effects. Environmental Science & Technology, 2021, 55, 8561-8572.	10.0	19
159	Size-Differentiated Chemical Characteristics of Asian Paleo Dust: Records from Aeolian Deposition on Chinese Loess Plateau. Journal of the Air and Waste Management Association, 2011, 61, 180-189.	1.9	18
160	Elemental and morphological analyses of filter tape deposits from a beta attenuation monitor. Atmospheric Research, 2012, 106, 181-189.	4.1	18
161	Source apportionment of atmospheric particulate carbon in Las Vegas, Nevada, USA. Particuology, 2013, 11, 110-118.	3.6	18
162	Temporal and spatial variations of PM2.5 organic and elemental carbon in Central India. Environmental Geochemistry and Health, 2018, 40, 2205-2222.	3.4	18

#	Article	IF	CITATIONS
163	Source Apportionment of Wintertime PM10at San Jose, Calif Journal of Environmental Engineering, ASCE, 1995, 121, 378-387.	1.4	17
164	Quantification of oxygenated polycyclic aromatic hydrocarbons in ambient aerosol samples using in-injection port thermal desorption-gas chromatography/mass spectrometry: Method exploration and validation. International Journal of Mass Spectrometry, 2018, 433, 25-30.	1.5	17
165	Household solid fuel burning emission characterization and activity levels in India. Science of the Total Environment, 2019, 654, 493-504.	8.0	17
166	Aerosol Chemical and Optical Properties during the Mt. Zirkel Visibility Study. Journal of Environmental Quality, 2001, 30, 1118-1125.	2.0	16
167	Changes in PM _{2.5} peat combustion source profiles with atmospheric aging in an oxidation flow reactor. Atmospheric Measurement Techniques, 2019, 12, 5475-5501.	3.1	16
168	PM ₁₀ Standards and Nontraditional Particulate Source Controls: A Summary of the A&WMA/EPA International Specialty Conference. Journal of the Air and Waste Management Association, 1993, 43, 74-84.	0.6	14
169	Seasonal and Spatial Variation of Solvent Extractable Organic Compounds in Fine Suspended Particulate Matter in Hong Kong. Journal of the Air and Waste Management Association, 2005, 55, 291-301.	1.9	14
170	Elemental composition of airborne aerosols at a traffic site and a suburban site in Hong Kong. International Journal of Environment and Pollution, 2009, 36, 166.	0.2	14
171	Biases in ketone measurements using DNPH-coated solid sorbent cartridges. Analytical Methods, 2014, 6, 967-974.	2.7	14
172	Characterization of smoke for spacecraft fire safety. Journal of Aerosol Science, 2019, 136, 36-47.	3.8	14
173	Fine Particle Receptor Modeling in the Atmosphere of Mexico City. Journal of the Air and Waste Management Association, 2009, 59, 1417-1428.	1.9	13
174	Quantification of nitrated-polycyclic aromatic hydrocarbons in atmospheric aerosol samples with in-injection port thermal desorption-gas chromatography/ negative chemical ionization mass spectrometry method. Atmospheric Environment, 2018, 192, 84-93.	4.1	13
175	Receptor Models in Air Resources Management: A Summary of the APCA International Specialty Conference. Japca, 1989, 39, 419-426.	0.3	12
176	Study of carbonaceous fractions associated with indoor PM2.5/PM10 during Asian cultural and ritual burning practices. Building and Environment, 2016, 106, 229-236.	6.9	12
177	Characterization and health risk assessment of PM2.5-bound organics inside and outside of Chinese smoking lounges. Chemosphere, 2017, 186, 438-445.	8.2	12
178	Air quality measurements—From rubber bands to tapping the rainbow. Journal of the Air and Waste Management Association, 2017, 67, 637-668.	1.9	11
179	Black carbon, organic carbon, and co-pollutant emissions and energy efficiency from artisanal brick production in Mexico. Atmospheric Chemistry and Physics, 2018, 18, 6023-6037.	4.9	11
180	Inter-comparison of elemental and organic carbon mass measurements from three North American national long-term monitoring networks at a co-located site. Atmospheric Measurement Techniques, 2019, 12, 4543-4560.	3.1	11

#	Article	IF	CITATIONS
181	Results of a Receptor Modeling Feasibility Study. Japca, 1988, 38, 661-667.	0.3	10
182	Dilution sampling and analysis of particulate matter in biomass-derived syngas. Frontiers of Environmental Science and Engineering in China, 2011, 5, 320-330.	0.8	10
183	Constraining aerosol optical models using ground-based, collocated particle size and mass measurements in variable air mass regimes during the 7-SEAS/Dongsha experiment. Atmospheric Environment, 2013, 78, 163-173.	4.1	10
184	Emissions and Partitioning of Intermediate-Volatility and Semi-Volatile Polar Organic Compounds (I/SV-POCs) During Laboratory Combustion of Boreal and Sub-Tropical Peat. Aerosol Science and Engineering, 2017, 1, 25-32.	1.9	10
185	Volatility Distribution of Organic Compounds in Sewage Incineration Emissions. Environmental Science & amp; Technology, 2020, 54, 14235-14245.	10.0	10
186	Improved estimation of PM2.5 brown carbon contributions to filter light attenuation. Particuology, 2021, 56, 1-9.	3.6	10
187	Review of Respirable Coal Mine Dust Characterization for Mass Concentration, Size Distribution and Chemical Composition. Minerals (Basel, Switzerland), 2021, 11, 426.	2.0	9
188	Receptor Models and Measurements for Identifying and Quantifying Air Pollution Sources. , 2015, , 677-706.		8
189	Decreasing concentrations of carbonaceous aerosols in China from 2003 to 2013. Scientific Reports, 2021, 11, 5352.	3.3	8
190	Ambient Air Quality at Barton Flats and Other California Forests. Ecological Studies, 1999, , 81-105.	1.2	8
191	Feasibility of Soil Dust Source Apportionment by the Pyrolysis-Gas Chromatography/Mass Spectrometry Method. Journal of the Air and Waste Management Association, 2006, 56, 1230-1242.	1.9	7
192	Prescribed burn smoke impact in the Lake Tahoe Basin: model simulation and field verification. International Journal of Environment and Pollution, 2013, 52, 225.	0.2	6
193	Spatial distribution of PM2.5-bound elements in eighteen cities over China: policy implication and health risk assessment. Environmental Geochemistry and Health, 2021, 43, 4771-4788.	3.4	6
194	Apportionment of Vehicle Fleet Emissions by Linear Regression, Positive Matrix Factorization, and Emission Modeling. Atmosphere, 2022, 13, 1066.	2.3	6
195	Light absorption by black sand dust. Applied Optics, 2000, 39, 4232.	2.1	5
196	Feasibility of coupling a thermal/optical carbon analyzer to a quadrupole mass spectrometer for enhanced PM2.5 speciation. Journal of the Air and Waste Management Association, 2018, 68, 463-476.	1.9	5
197	PM _{2.5} pollution in China's Guanzhong Basin and the USA's San Joaquin Valley mega-regions. Faraday Discussions, 2021, 226, 255-289.	3.2	5
198	Assessing the magnitude of PM2.5 polycyclic aromatic hydrocarbon emissions from residential solid fuel combustion and associated health hazards in South Asia. Atmospheric Pollution Research, 2021, 12, 101142.	3.8	5

#	Article	IF	CITATIONS
199	Hot Filter/Impinger and Dilution Sampling for Fine Particulate Matter Characterization from Ferrous Metal Casting Processes. Journal of the Air and Waste Management Association, 2008, 58, 553-561.	1.9	4
200	Air quality measurements—From rubber bands to tapping the rainbow. Journal of the Air and Waste Management Association, 2017, 67, 1159-1168.	1.9	4
201	RECEPTOR MODELS FOR SOURCE APPORTIONMENT OF SUSPENDED PARTICLES. , 2007, , 273-310.		3
202	Measuring the Organic Carbon to Organic Matter Multiplier with Thermal/Optical Carbon-Quadrupole Mass Spectrometer Analyses. Aerosol Science and Engineering, 2018, 2, 165-172.	1.9	3
203	Public Health and Components of Particulate Matter: The Changing Assessment of Black Carbon. Journal of the Air and Waste Management Association, 2014, 64, 617-619.	1.9	2
204	Winter Urban Particulate Chemistry and Denver's "Brown Cloud― Part II. Air Chemistry and Meteorology. Aerosol Science and Engineering, 2020, 4, 80-100.	1.9	2
205	Methodology to Create Reproducible Validation/Reference Materials for Comparison of Filter-Based Measurements of Carbonaceous Aerosols That Measure BC, BrC, EC, OC, and TC. Metrology, 2021, 1, 142-165.	1.5	2
206	Quantification of carboxylâ€functionalized multiwall carbon nanotubes in plant tissues with programmed thermal analysis. Journal of Environmental Quality, 2021, 50, 278-285.	2.0	0