List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11557073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nature Communications, 2019, 10, 1278.	12.8	591
2	Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nature Energy, 2019, 4, 594-603.	39.5	572
3	Rhombohedral Prussian White as Cathode for Rechargeable Sodium-Ion Batteries. Journal of the American Chemical Society, 2015, 137, 2548-2554.	13.7	552
4	Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature, 2017, 546, 124-128.	27.8	551
5	Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes. Advanced Materials, 2011, 23, 4679-4683.	21.0	505
6	Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nature Communications, 2017, 8, 2091.	12.8	469
7	The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Physical Chemistry Chemical Physics, 2014, 16, 18294-18300.	2.8	431
8	Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy and Environmental Science, 2017, 10, 2190-2200.	30.8	401
9	Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Chemical Reviews, 2017, 117, 13123-13186.	47.7	390
10	Estimating Hybridization of Transition Metal and Oxygen States in Perovskites from O <i>K</i> -edge X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 1856-1863.	3.1	339
11	Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes. Journal of the American Chemical Society, 2013, 135, 12048-12056.	13.7	332
12	Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nature Materials, 2020, 19, 419-427.	27.5	328
13	Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nature Communications, 2015, 6, 6401.	12.8	316
14	Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode. Joule, 2018, 2, 125-140.	24.0	311
15	Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nature Materials, 2021, 20, 214-221.	27.5	290
16	Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nature Materials, 2019, 18, 256-265.	27.5	280
17	Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nature Catalysis, 2021, 4, 212-222.	34.4	266
18	Elucidating anionic oxygen activity in lithium-rich layered oxides. Nature Communications, 2018, 9, 947.	12.8	241

#	Article	IF	CITATIONS
19	High Reversibility of Lattice Oxygen Redox Quantified by Direct Bulk Probes of Both Anionic and Cationic Redox Reactions. Joule, 2019, 3, 518-541.	24.0	225
20	Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy and Environmental Science, 2020, 13, 4450-4497.	30.8	219
21	Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy. Nature Communications, 2013, 4, 2568.	12.8	211
22	High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nature Energy, 2020, 5, 1043-1050.	39.5	205
23	Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries. Journal of the American Chemical Society, 2015, 137, 2565-2571.	13.7	203
24	An In Situ Formed Surface Coating Layer Enabling LiCoO ₂ with Stable 4.6 V Highâ€Voltage Cycle Performances. Advanced Energy Materials, 2020, 10, 2001413.	19.5	201
25	Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. Nature Communications, 2017, 8, 981.	12.8	197
26	Reaction Mechanisms for Long-Life Rechargeable Zn/MnO ₂ Batteries. Chemistry of Materials, 2019, 31, 2036-2047.	6.7	195
27	Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. Journal of Power Sources, 2018, 389, 188-197.	7.8	183
28	Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 4211-4223.	10.3	180
29	Naâ€ l on Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide. Advanced Energy Materials, 2017, 7, 1700959.	19.5	168
30	Enhancing the High-Voltage Cycling Performance of LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al ₂ O ₃ . ACS Applied Materials &: Interfaces, 2015, 7, 25105-25112,	8.0	158
31	Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nature Energy, 2020, 5, 213-221.	39.5	158
32	Spectroscopic fingerprints of valence and spin states in manganese oxides and fluorides. Current Applied Physics, 2013, 13, 544-548.	2.4	157
33	Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nature Materials, 2021, 20, 353-361.	27.5	155
34	Phase Transformation and Lithiation Effect on Electronic Structure of Li _{<i>x</i>} FePO ₄ : An In-Depth Study by Soft X-ray and Simulations. Journal of the American Chemical Society, 2012, 134, 13708-13715.	13.7	136
35	Soft X-Ray Irradiation Effects of Li2O2, Li2CO3 and Li2O Revealed by Absorption Spectroscopy. PLoS ONE, 2012, 7, e49182.	2.5	128
36	Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi _{0.5} Mn _{1.5} O ₄ Electrodes. Journal of Physical Chemistry C, 2015, 119, 27228-27233.	3.1	125

#	Article	IF	CITATIONS
37	Role of Superexchange Interaction on Tuning of Ni/Li Disordering in Layered Li(Ni _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>})O ₂ . Journal of Physical Chemistry Letters, 2017, 8, 5537-5542.	4.6	125
38	Recent Progress on Synchrotronâ€Based Inâ€6itu Soft Xâ€ray Spectroscopy for Energy Materials. Advanced Materials, 2014, 26, 7710-7729.	21.0	123
39	Design principles for high transition metal capacity in disordered rocksalt Li-ion cathodes. Energy and Environmental Science, 2018, 11, 2159-2171.	30.8	123
40	Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nature Energy, 2019, 4, 977-987.	39.5	123
41	Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application. Nano Letters, 2015, 15, 7927-7932.	9.1	121
42	Enabling Stable Highâ€Voltage LiCoO ₂ Operation by Using Synergetic Interfacial Modification Strategy. Advanced Functional Materials, 2020, 30, 2004664.	14.9	119
43	Direct evidence of gradient Mn(II) evolution at charged states in LiNi0.5Mn1.5O4 electrodes with capacity fading. Journal of Power Sources, 2015, 273, 1120-1126.	7.8	115
44	Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithiumâ€Rich Cathode Oxides. Angewandte Chemie - International Edition, 2019, 58, 4323-4327.	13.8	114
45	Unraveling the Cationic and Anionic Redox Reactions in a Conventional Layered Oxide Cathode. ACS Energy Letters, 2019, 4, 2836-2842.	17.4	111
46	Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nature Communications, 2016, 7, 13370.	12.8	109
47	Revealing and suppressing surface Mn(II) formation of Na0.44MnO2 electrodes for Na-ion batteries. Nano Energy, 2015, 16, 186-195.	16.0	107
48	High-efficiency <i>in situ</i> resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source. Review of Scientific Instruments, 2017, 88, 033106.	1.3	107
49	Microbial Interactions With Dissolved Organic Matter Drive Carbon Dynamics and Community Succession. Frontiers in Microbiology, 2018, 9, 1234.	3.5	107
50	Atomic‣cale Origin of Longâ€Term Stability and High Performance of <i>p</i> â€GaN Nanowire Arrays for Photocatalytic Overall Pure Water Splitting. Advanced Materials, 2016, 28, 8388-8397.	21.0	106
51	Iron-Based Perovskites for Catalyzing Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2018, 122, 8445-8454.	3.1	106
52	Quantifying the Capacity Contributions during Activation of Li ₂ MnO ₃ . ACS Energy Letters, 2020, 5, 634-641.	17.4	105
53	Modification of Transition-Metal Redox by Interstitial Water in Hexacyanometalate Electrodes for Sodium-Ion Batteries. Journal of the American Chemical Society, 2017, 139, 18358-18364.	13.7	102
54	Depolarized and Fully Active Cathode Based on Li(Ni _{0.5} Co _{0.2} Mn _{0.3})O ₂ Embedded in Carbon Nanotube Network for Advanced Batteries. Nano Letters, 2014, 14, 4700-4706.	9.1	95

#	Article	IF	CITATIONS
55	Distinct Solidâ€Electrolyteâ€Interphases on Sn (100) and (001) Electrodes Studied by Soft Xâ€Ray Spectroscopy. Advanced Materials Interfaces, 2014, 1, 1300115.	3.7	94
56	Formation of a K—In—Se Surface Species by NaF/KF Postdeposition Treatment of Cu(In,Ga)Se ₂ Thin-Film Solar Cell Absorbers. ACS Applied Materials & Interfaces, 2017, 9, 3581-3589.	8.0	94
57	Reversible Anionic Redox Activities in Conventional LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathodes. Angewandte Chemie - International Edition, 2020, 59, 8681-8688.	13.8	91
58	Quantitative probe of the transition metal redox in battery electrodes through soft x-ray absorption spectroscopy. Journal Physics D: Applied Physics, 2016, 49, 413003.	2.8	90
59	Mussel-Inspired Conductive Polymer Binder for Si-Alloy Anode in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5440-5446.	8.0	90
60	Key electronic states in lithium battery materials probed by soft X-ray spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 64-74.	1.7	89
61	Extended Interfacial Stability through Simple Acid Rinsing in a Li-Rich Oxide Cathode Material. Journal of the American Chemical Society, 2020, 142, 8522-8531.	13.7	88
62	Cycling mechanism of Li2MnO3: Li–CO2Âbatteries and commonality on oxygen redox in cathode materials. Joule, 2021, 5, 975-997.	24.0	88
63	Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries. Nature Communications, 2018, 9, 861.	12.8	84
64	Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries. Journal of the American Chemical Society, 2019, 141, 4900-4907.	13.7	83
65	Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes. Science Advances, 2020, 6, eaaw3871.	10.3	82
66	X-ray spectroscopy of energy materials under in situ/operando conditions. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200, 264-273.	1.7	81
67	Spectroscopic Signature of Oxidized Oxygen States in Peroxides. Journal of Physical Chemistry Letters, 2018, 9, 6378-6384.	4.6	80
68	Design Rules for High-Valent Redox in Intercalation Electrodes. Joule, 2020, 4, 1369-1397.	24.0	80
69	Effect of Chromium and Niobium Doping on the Morphology and Electrochemical Performance of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode Material. ACS Applied Materials & Interfaces, 2016, 8, 9116-9124.	8.0	78
70	Tuning Cu dopant of Zn0.5Cd0.5S nanocrystals enables high-performance photocatalytic H2 evolution from water splitting under visible-light irradiation. Nano Energy, 2016, 26, 405-416.	16.0	78
71	Modular soft x-ray spectrometer for applications in energy sciences and quantum materials. Review of Scientific Instruments, 2017, 88, 013110.	1.3	77
72	Electrochemical and spectroscopic study of novel Cu and Fe-based catalysts forÂoxygen reduction in alkaline media. Journal of Power Sources, 2012, 213, 169-179.	7.8	76

#	Article	IF	CITATIONS
73	Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nature Communications, 2019, 10, 4975.	12.8	75
74	Negligible voltage hysteresis with strong anionic redox in conventional battery electrode. Nano Energy, 2020, 74, 104831.	16.0	72
75	Evolution of the Electrode–Electrolyte Interface of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Electrodes Due to Electrochemical and Thermal Stress. Chemistry of Materials, 2018, 30, 958-969.	6.7	71
76	Prelithiation Activates Li(Ni _{0.5} Mn _{0.3} Co _{0.2})O ₂ for High Capacity and Excellent Cycling Stability. Nano Letters, 2015, 15, 5590-5596.	9.1	68
77	Nuclear dynamics and spectator effects in resonant inelastic soft x-ray scattering of gas-phase water molecules. Journal of Chemical Physics, 2012, 136, 144311.	3.0	66
78	In Situ Formation of a Cathode–Electrolyte Interface with Enhanced Stability by Titanium Substitution for High Voltage Spinel Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2015, 2, 1500109.	3.7	65
79	Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nature Energy, 2021, 6, 706-714.	39.5	65
80	Transition-metal redox evolution in LiNi0.5Mn0.3Co0.2O2 electrodes at high potentials. Journal of Power Sources, 2017, 360, 294-300.	7.8	62
81	Revisiting the charge compensation mechanisms in LiNi _{0.8} Co _{0.2â^'y} Al _y O ₂ systems. Materials Horizons, 2019, 6, 2112-2123.	12.2	62
82	Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials. Nature Communications, 2021, 12, 2350.	12.8	59
83	Origin of the Monochromatic Photoemission Peak in Diamondoid Monolayers. Nano Letters, 2009, 9, 57-61.	9.1	58
84	Probing LaMO ₃ Metal and Oxygen Partial Density of States Using X-ray Emission, Absorption, and Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 2063-2072.	3.1	56
85	Deciphering the Oxygen Absorption Preâ€edge: A Caveat on its Application for Probing Oxygen Redox Reactions in Batteries. Energy and Environmental Materials, 2021, 4, 246-254.	12.8	56
86	Revisiting the role of Zr doping in Ni-rich layered cathodes for lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 17415-17424.	10.3	56
87	Oxygen-redox reactions in LiCoO2 cathode without O–O bonding during charge-discharge. Joule, 2021, 5, 720-736.	24.0	56
88	Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nature Energy, 2022, 7, 808-817.	39.5	55
89	X-ray absorption spectroscopy of biomimetic dye molecules for solar cells. Journal of Chemical Physics, 2009, 131, 194701.	3.0	54
90	Synthesis and Reaction Mechanism of Novel Fluorinated Carbon Fiber as a High-Voltage Cathode Material for Rechargeable Na Batteries. Chemistry of Materials, 2016, 28, 1026-1033.	6.7	53

#	Article	IF	CITATIONS
91	Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance. Nano Letters, 2017, 17, 6018-6026.	9.1	53
92	Oxygen release and oxygen redox. Nature Energy, 2018, 3, 619-620.	39.5	53
93	Why LiFePO ₄ is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation. Physical Chemistry Chemical Physics, 2015, 17, 26369-26377.	2.8	52
94	Short O–O separation in layered oxide Na _{0.67} CoO ₂ enables an ultrafast oxygen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23473-23479.	7.1	52
95	Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold. Journal of the American Chemical Society, 2008, 130, 10536-10544.	13.7	47
96	Universal mechanism for breaking amide bonds by ionizing radiation. Journal of Chemical Physics, 2011, 135, 044702.	3.0	47
97	Breathing and oscillating growth of solid-electrolyte-interphase upon electrochemical cycling. Chemical Communications, 2018, 54, 814-817.	4.1	47
98	Surface-to-Bulk Redox Coupling through Thermally Driven Li Redistribution in Li- and Mn-Rich Layered Cathode Materials. Journal of the American Chemical Society, 2019, 141, 12079-12086.	13.7	47
99	Fingerprint Oxygen Redox Reactions in Batteries through High-Efficiency Mapping of Resonant Inelastic X-ray Scattering. Condensed Matter, 2019, 4, 5.	1.8	44
100	Manipulating the polarity of conductive polymer binders for Si-based anodes in lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3651-3658.	10.3	43
101	Layered-rocksalt intergrown cathode for high-capacity zero-strain battery operation. Nature Communications, 2021, 12, 2348.	12.8	43
102	Fluorination effect for stabilizing cationic and anionic redox activities in cation-disordered cathode materials. Energy Storage Materials, 2020, 32, 234-243.	18.0	42
103	Attachment of Protoporphyrin Dyes to Nanostructured ZnO Surfaces: Characterization by Near Edge X-ray Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 18195-18201.	3.1	41
104	Utilizing Oxygen Redox in Layered Cathode Materials from Multiscale Perspective. Advanced Energy Materials, 2021, 11, 2003227.	19.5	39
105	High-Capacity, Aliovalently Doped Olivine LiMn _{1–3<i>x</i>/2} V _{<i>x</i>/3>2} ACathodes without Carbon Coating. Chemistry of Materials, 2014, 26, 3018-3026.	6.7	37
106	Role of Redoxâ€Inactive Transitionâ€Metals in the Behavior of Cationâ€Disordered Rocksalt Cathodes. Small, 2020, 16, e2000656.	10.0	37
107	Asymmetric K/Li-Ion Battery Based on Intercalation Selectivity. ACS Energy Letters, 2018, 3, 65-71.	17.4	36
108	Correlating the phase evolution and anionic redox in Co-Free Ni-Rich layered oxide cathodes. Nano Energy, 2020, 78, 105365.	16.0	36

#	Article	IF	CITATIONS
109	How Bulk Sensitive is Hard X-ray Photoelectron Spectroscopy: Accounting for the Cathode–Electrolyte Interface when Addressing Oxygen Redox. Journal of Physical Chemistry Letters, 2020, 11, 2106-2112.	4.6	36
110	P2-type Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ Cathode Material with Excellent Rate and Cycling Performance for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A3980-A3986.	2.9	34
111	Uncommon Behavior of Li Doping Suppresses Oxygen Redox in P2â€Type Manganeseâ€Rich Sodium Cathodes. Advanced Materials, 2021, 33, e2107141.	21.0	34
112	Unoccupied states in Cu and Zn octaethyl-porphyrin and phthalocyanine. Journal of Chemical Physics, 2011, 134, 204707.	3.0	33
113	Distinction between Intrinsic and X-ray-Induced Oxidized Oxygen States in Li-Rich 3d Layered Oxides and LiAlO ₂ . Journal of Physical Chemistry C, 2019, 123, 13201-13207.	3.1	33
114	Tuning Oxygen Redox Reaction through the Inductive Effect with Proton Insertion in Li-Rich Oxides. ACS Applied Materials & Interfaces, 2020, 12, 7277-7284.	8.0	33
115	Understanding the Structural Evolution of a Nickel Chalcogenide Electrocatalyst Surface for Water Oxidation. Energy & Fuels, 2021, 35, 4387-4403.	5.1	33
116	Distinct Oxygen Redox Activities in Li ₂ MO ₃ (M = Mn, Ru, Ir). ACS Energy Letters, 2021, 6, 3417-3424.	17.4	33
117	Identifying the anionic redox activity in cation-disordered Li _{1.25} Nb _{0.25} Fe _{0.50} O ₂ /C oxide cathodes for Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 5115-5127.	10.3	32
118	The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by Xâ€Ray Spectroscopy and Theory. Angewandte Chemie - International Edition, 2021, 60, 10880-10887.	13.8	32
119	Realizing continuous cation order-to-disorder tuning in a class of high-energy spinel-type Li-ion cathodes. Matter, 2021, 4, 3897-3916.	10.0	32
120	Full Energy Range Resonant Inelastic X-ray Scattering of O ₂ and CO ₂ : Direct Comparison with Oxygen Redox State in Batteries. Journal of Physical Chemistry Letters, 2020, 11, 2618-2623.	4.6	30
121	Ion-Solvation-Induced Molecular Reorganization in Liquid Water Probed by Resonant Inelastic Soft X-ray Scattering. Journal of Physical Chemistry Letters, 2014, 5, 4143-4148.	4.6	29
122	Coulombically-stabilized oxygen hole polarons enable fully reversible oxygen redox. Energy and Environmental Science, 2021, 14, 4858-4867.	30.8	29
123	In Situ/Operando (Soft) Xâ€ray Spectroscopy Study of Beyond Lithiumâ€ion Batteries. Energy and Environmental Materials, 2021, 4, 139-157.	12.8	26
124	Hard X-rays in–soft X-rays out: An operando piggyback view deep into a charging lithium ion battery with X-ray Raman spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200, 257-263.	1.7	25
125	Mechanism of Exact Transition between Cationic and Anionic Redox Activities in Cathode Material Li ₂ FeSiO ₄ . Journal of Physical Chemistry Letters, 2018, 9, 6262-6268.	4.6	24
126	Tailoring the Redox Reactions for Highâ€Capacity Cycling of Cationâ€Disordered Rocksalt Cathodes. Advanced Functional Materials, 2021, 31, 2008696.	14.9	23

#	Article	IF	CITATIONS
127	Electronic Structure of Diamond Surfaces Functionalized by Ru(tpy) ₂ . Journal of Physical Chemistry C, 2012, 116, 13877-13883.	3.1	21
128	Effect of excess lithium in LiMn2O4 and Li1.15Mn1.85O4 electrodes revealed by quantitative analysis of soft X-ray absorption spectroscopy. Applied Physics Letters, 2017, 110, .	3.3	21
129	Enabling Facile Anionic Kinetics through Cationic Redox Mediator in Li-Rich Layered Cathodes. ACS Energy Letters, 2020, 5, 3535-3543.	17.4	21
130	Photocharging and Band Gap Narrowing Effects on the Performance of Plasmonic Photoelectrodes in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 31374-31383.	8.0	20
131	Whither Mn Oxidation in Mn-Rich Alkali-Excess Cathodes?. ACS Energy Letters, 2021, 6, 1055-1064.	17.4	20
132	Rubidium Fluoride Post-Deposition Treatment: Impact on the Chemical Structure of the Cu(In,Ga)Se ₂ Surface and CdS/Cu(In,Ga)Se ₂ Interface in Thin-Film Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 37602-37608.	8.0	19
133	Advances in soft X-ray RIXS for studying redox reaction states in batteries. Dalton Transactions, 2020, 49, 13519-13527.	3.3	19
134	Soft x-ray spectroscopy for probing electronic and chemical states of battery materials. Chinese Physics B, 2016, 25, 017104.	1.4	18
135	Highly reversible Li ₂ RuO ₃ cathodes in sulfide-based all solid-state lithium batteries. Energy and Environmental Science, 2022, 15, 3470-3482.	30.8	17
136	Towards efficient time-resolved X-ray absorption studies of electron dynamics at photocatalytic interfaces. Faraday Discussions, 2016, 194, 659-682.	3.2	16
137	Construction of Uniform Cobalt-Based Nanoshells and Its Potential for Improving Li-Ion Battery Performance. ACS Applied Materials & amp; Interfaces, 2018, 10, 22896-22901.	8.0	16
138	Reversible Anionic Redox Activities in Conventional LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathodes. Angewandte Chemie, 2020, 132, 8759-8766.	2.0	15
139	Exceptional Cycling Performance Enabled by Local Structural Rearrangements in Disordered Rocksalt Cathodes. Advanced Energy Materials, 2022, 12, .	19.5	15
140	Transition metal redox and Mn disproportional reaction in LiMn0.5Fe0.5PO4 electrodes cycled with aqueous electrolyte. Applied Physics Letters, 2016, 109, .	3.3	13
141	Valence Electronic Structure of Li ₂ O ₂ , Li ₂ O, Li ₂ CO ₃ , and LiOH Probed by Soft X-ray Emission Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 5460-5466.	3.1	13
142	Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithiumâ€Rich Cathode Oxides. Angewandte Chemie, 2019, 131, 4367-4371.	2.0	13
143	Interfacial properties in energy storage systems studied by soft x-ray absorption spectroscopy and resonant inelastic x-ray scattering. Journal of Chemical Physics, 2020, 152, 140901.	3.0	13
144	Interplay between Cation and Anion Redox in Ni-Based Disordered Rocksalt Cathodes. ACS Nano, 2021, 15, 13360-13369.	14.6	13

#	Article	IF	CITATIONS
145	Redox Mechanism in Na-Ion Battery Cathodes Probed by Advanced Soft X-Ray Spectroscopy. Frontiers in Chemistry, 2020, 8, 816.	3.6	12
146	Trace Key Mechanistic Features of the Arsenite Sequestration Reaction with Nanoscale Zerovalent Iron. Journal of the American Chemical Society, 2021, 143, 16538-16548.	13.7	12
147	Experiments and Theory of In situ and Operando Soft X-ray Spectroscopy for Energy Storage. Synchrotron Radiation News, 2014, 27, 4-13.	0.8	11
148	Time- and strain-dependent nanoscale structural degradation in phase change epitaxial strontium ferrite films. Npj Materials Degradation, 2020, 4, .	5.8	11
149	Elemental-sensitive Detection of the Chemistry in Batteries through Soft X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering. Journal of Visualized Experiments, 2018, , .	0.3	10
150	Suppression of voltage-decay in Li ₂ MnO ₃ cathode <i>via</i> reconstruction of layered-spinel coexisting phases. Journal of Materials Chemistry A, 2020, 8, 18687-18697.	10.3	10
151	Observation of Double Excitations in the Resonant Inelastic X-ray Scattering of Nitric Oxide. Journal of Physical Chemistry Letters, 2020, 11, 7476-7482.	4.6	10
152	The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by Xâ€Ray Spectroscopy and Theory. Angewandte Chemie, 2021, 133, 10975-10982.	2.0	10
153	Spectroscopic characterization of electronic structures of ultra-thin single crystal La0.7Sr0.3MnO3. Scientific Reports, 2021, 11, 5250.	3.3	10
154	A design of resonant inelastic X-ray scattering (RIXS) spectrometer for spatial- and time-resolved spectroscopy. Journal of Synchrotron Radiation, 2020, 27, 695-707.	2.4	10
155	Electrochemical and spectroscopic characterization of a dicobalt macrocyclic Pacman complex in the catalysis of the oxygen reduction reaction in acid media. Journal of Porphyrins and Phthalocyanines, 2013, 17, 252-258.	0.8	8
156	Momentum-resolved resonant inelastic soft X-ray scattering (qRIXS) endstation at the ALS. Journal of Electron Spectroscopy and Related Phenomena, 2022, 257, 146897.	1.7	8
157	Controlled Experiments and Optimized Theory of Absorption Spectra of Li Metal and Salts. ACS Applied Materials & Materials & Samp; Interfaces, 2021, 13, 45488-45495.	8.0	8
158	Could Irradiation Introduce Oxidized Oxygen Signals in Resonant Inelastic X-ray Scattering of Battery Electrodes?. Journal of Physical Chemistry Letters, 2021, 12, 1138-1143.	4.6	7
159	Imide Photodissociation Investigated by X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 7048-7054.	2.6	6
160	Interactions at the electrode-electrolyte interfaces in batteries studied by quasi-in-situ soft x-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 58-64.	1.7	6
161	Nearâ€Surface [Ga]/([In]+[Ga]) Composition in Cu(In,Ga)Se 2 Thinâ€Film Solar Cell Absorbers: An Overlooked Material Feature. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800856.	1.8	6
162	Electrochemical Utilization of Iron IV in the Li _{1.3} Fe _{0.4} Nb _{0.3} O ₂ Disordered Rocksalt Cathode. Batteries and Supercaps, 2021, 4, 771-777.	4.7	6

#	ARTICLE	IF	CITATIONS
163	Interface Formation between CdS and Alkali Postdeposition-Treated Cu(In,Ga)Se ₂ Thin-Film Solar Cell Absorbers—Key To Understanding the Efficiency Gain. ACS Applied Materials & Interfaces, 2020, 12, 6688-6698.	8.0	5
164	Amorphous nonstoichiometric oxides with tunable room-temperature ferromagnetism and electrical transport. Science Bulletin, 2020, 65, 1718-1725.	9.0	5
165	High-Voltage Reactivity and Long-Term Stability of Cation-Disordered Rocksalt Cathodes. Chemistry of Materials, 2022, 34, 1524-1532.	6.7	5
166	Improving the NO _x decomposition and storage activity through co-incorporating ammonium and copper ions into Mg/Al hydrotalcites. RSC Advances, 2016, 6, 45127-45134.	3.6	4
167	Precisely quantifying bulk transition metal valence evolution in conventional battery electrode by inverse partial fluorescence yield. Journal of Energy Chemistry, 2022, 69, 363-368.	12.9	4
168	Another view of oxygen in cathodes for high energy batteries. Joule, 2022, 6, 946-949.	24.0	0