
Xiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1155531/publications.pdf Version: 2024-02-01

XIANC LIU

#	Article	IF	CITATIONS
1	Enhanced temperature coefficient of resistance and magnetoresistance of Co-doped La0.67Ca0.33MnO3 polycrystalline ceramics. Ceramics International, 2022, 48, 407-414.	4.8	8
2	Large temperature coefficient of resistivity (TCR) of La1-Ca MnO3 films prepared by spin-coating method. Journal of Alloys and Compounds, 2022, 890, 161788.	5.5	7
3	High-performance La0.75K0.25MnO3:xAg2O composites based on electron-lattice and electron-magnetic coupling mechanism. Journal of Alloys and Compounds, 2022, 895, 162555.	5.5	7
4	Bivalent Sr2+ doping to improve room-temperature TCR of La0.8-Sr Ag0.2MnO3 polycrystalline ceramics. Journal of Alloys and Compounds, 2022, 902, 163691.	5.5	2
5	A-site Ca/Sr co-doping to optimize room-temperature TCR of La0.7Ca0.3-Sr MnO3 films. Ceramics International, 2022, 48, 11094-11102.	4.8	9
6	Optimization of temperature coefficient of resistivity of La0.7Ca0.2-xSrxK0.1MnO3 films by Sr at room-temperature. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	3
7	Adjusting the K-doping of La1-K MnO3 (0.1Ââ‰ÂxÂâ‰Â0.35) films to obtain high TCR and LFMR at room-temperature. Applied Surface Science, 2022, 589, 152905.	6.1	10
8	Effect of deposition time on electrical properties of La0.67Ca0.33MnO3:Ag0.2 thin films by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	1
9	Co-optimization of Na and K doping for improved room-temperature TCR of La0.7(Na0.3-K)MnO3 polycrystalline ceramics. Ceramics International, 2022, 48, 24290-24297.	4.8	5
10	Impact of the transition metal ion-doped on the electrical and magnetic properties of La0.67Ca0.33MnO3Ag0.15-based polycrystalline ceramics. Advanced Powder Technology, 2022, 33, 103714.	4.1	0
11	Structural, electrical and magnetic transport properties of Pr1â^'Sr MnO3 (0.30Â≤xÂ≤0.35) ceramics prepared by sol-gel method. Journal of Magnetism and Magnetic Materials, 2022, 560, 169679.	2.3	3
12	Optimization of room-temperature TCR of polycrystalline La0.9-Sr K0.1MnO3 ceramics by Sr adjustment. Ceramics International, 2021, 47, 94-101.	4.8	10
13	High-density sol-gel derived, cold-isostatically pressed La0.67Ca0.27Sr0.06MnO3 polycrystalline ceramics and their room-temperature TCR improvement. Ceramics International, 2021, 47, 7674-7682.	4.8	3
14	Improved roomâ€ŧemperature TCR and MR of La0.9â^'xKxCa0.1MnO3 ceramics by A-sites vacancy and disorder degree adjustment. Journal of Materials Science: Materials in Electronics, 2021, 32, 8848-8862.	2.2	8
15	A comparative study on high TCR and MR of LaO·67CaO·33MnO3 polycrystalline ceramics prepared by solid-state and sol-gel methods. Ceramics International, 2021, 47, 13469-13479.	4.8	32
16	TCR and MR room-temperature enhancing mechanism of La0.7K0.3â^'Sr MnO3 ceramics for uncooling infrared bolometers and magnetic sensor devices. Ceramics International, 2021, 47, 18931-18941.	4.8	12
17	High room-temperature TCR of La0.7(K0.25Sr0.05)MnO3:xAg2O composites obtained at optimized Ag2O ratio. Journal of Alloys and Compounds, 2021, 873, 159762.	5.5	2
18	Significantly enhanced room-temperature TCR and MR of La0.67K0.33-Sr MnO3 ceramics by adjusting Sr content. Ceramics International, 2021, 47, 33202-33202.	4.8	4

Xiang Liu

#	Article	IF	CITATIONS
19	Electrical properties of La0.72Ca0.28MnO3: Ag0.2 thin films of different deposition time prepared by deposited pulsed laser method. Journal of Materials Science: Materials in Electronics, 2021, 32, 22999-23006.	2.2	0
20	Impact of K doping on room-temperature temperature coefficient of resistivity of La0.7(Ag0.3-K)MnO3 (0.160 ≤ ≤0.180) polycrystalline ceramics. Ceramics International, 2021, 47, 24721-24731.	4.8	9
21	Using spin coating method to prepare near room-temperature TCR of La0.7Ca0.205Sr0.095MnO3 films for uncooled infrared bolometers. Journal of Alloys and Compounds, 2021, 876, 160173.	5.5	12
22	A-site Na-doping to enhance room-temperature TCR of La1-Na MnO3 polycrystalline ceramics. Materials Today Communications, 2021, 28, 102496.	1.9	6
23	Improved room-temperature TCR of La0.7Ag0.125K0.175MnO3 films by optimizing sintering temperatures. Applied Surface Science, 2021, 570, 151222.	6.1	14
24	High room-temperature TCR and MR of La1-Sr MnO3 thin films for advanced uncooled infrared bolometers and magnetic sensors. Applied Surface Science, 2021, 570, 151221.	6.1	13
25	Co-optimization of matrix phase and second phase for improved room-temperature TCR of (La0.6Na0.4MnO3)1â°'Ag composites. Materials Letters, 2021, 304, 130714.	2.6	4
26	Electrical transport properties of (Pr1-La)0.7Sr0.3MnO3 (0 ≤ ≤0.3) polycrystalline ceramics prepared by sol-gel process for potential room temperature bolometer use. Ceramics International, 2020, 46, 4984-4991.	4.8	21
27	Effect of Na-doping on structural, electrical, and magnetoresistive properties of La0.7(Ag0.3-Na) Tj ETQq1 1 0.78	84314 rgB⁻ 4.8	「/Qyerlock」
28	Influence of different post-annealing temperatures on physical properties of La0.72Ca0.28MnO3:Ag0.2 thin films by pulsed laser deposition technique. Ceramics International, 2020, 46, 6418-6423.	4.8	7
29	Enhanced room-temperature TCR of La0.67Ca0.33-Sr MnO3 (0.06 ≤ ≤0.11) polycrystalline ceramics by Sr content adjustment. Ceramics International, 2020, 46, 7568-7575.	4.8	14
30	Utilization of metallic Ag and Ag ⁺ ions to optimize room-temperature TCR and MR of La _{0.7} (Ca _{0.205} Sr _{0.095})MnO ₃ : <i>x</i> Ag ₂ O composites. Journal of Materials Chemistry C, 2020, 8, 17054-17064.	5.5	24
31	A-site K-doping to enhance room-temperature TCR of polycrystalline La0.8Sr0.2-K MnO3 ceramics. Journal of Alloys and Compounds, 2020, 847, 156417.	5.5	16
32	A-site mixed-valence co-doping to optimize room-temperature TCR of polycrystalline La0.8K0.04Ca0.16-Sr MnO3 ceramics. Ceramics International, 2020, 46, 20640-20651.	4.8	16
33	Influence of Ag doping on room-temperature TCR of La0.67Sr0.33â^xAgxMnO3 polycrystalline ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 12389-12397.	2.2	3
34	Strain-Insensitive Elastic Surface Electromyographic (sEMG) Electrode for Efficient Recognition of Exercise Intensities. Micromachines, 2020, 11, 239.	2.9	8
35	(Pr0.75La0.25)0.7Sr0.3MnO3:Ag (0 ≤ ≤0.25) polycrystalline ceramics with room-temperature TCR improvement for uncooled infrared bolometers. Ceramics International, 2020, 46, 19028-19037.	4.8	9
36	Electrical and magnetic properties of La1-Ag MnO3 (0 ≤ ≤0.5) polycrystalline ceramics by combination of first principles calculations and experimental methods. Journal of Alloys and Compounds, 2019, 808, 151709.	5.5	17

XIANG LIU

#	Article	IF	CITATIONS
37	Laser-induced transverse voltage in (111)-oriented TiO1+ <i>δ</i> epitaxial thin films with cubic structure. Applied Physics Letters, 2019, 114, .	3.3	4
38	Electrical conduction in La0.85Sr0.15MnO3:Ag (0 ≤ ≤0.5) ceramics with large room-temperature TCR. Ceramics International, 2019, 45, 24070-24077.	4.8	12
39	Room-temperature TCR and low-field MR of La0.7Ca0.3-Sr MnO3 (0.06 ≤ ≤0.1) polycrystalline ceramics. Ceramics International, 2019, 45, 21448-21456.	4.8	14
40	La0.67(Ca0.24Sr0.09)MnO3:xAg2O (0†â‰≇€ x†â‰≇€ 0.25) composites with improved room–temperatu for advanced uncooling infrared bolometers and magnetic sensors. Applied Surface Science, 2019, 493, 448-457.	re TCR and 6.1	d MR 31
41	Influence of Ag on TCR and MR of La0.7(Ca0.27Sr0.03)MnO3:Ag0.2 ceramics subjected to cross magnetic fields. Ceramics International, 2019, 45, 20396-20404.	4.8	8
42	Structural, electrical and magnetic properties of La0.625Ca0.285Sr0.09MnO3 polycrystalline ceramics doped with Ag2O. Journal of Materials Science: Materials in Electronics, 2019, 30, 19862-19870.	2.2	6
43	LaO·7CaO.3â^'Sr MnO3:AgO.2 (0.0165 ≤ ≤0.1) ceramics with large and stable TCR in different magnetic field environments. Ceramics International, 2019, 45, 24742-24749.	4.8	9
44	Impact of Ag doping on the structural, surface morphologic and electrical properties of La0.625(Ca0.285Sr0.09)MnO3 polycrystalline ceramics. Journal of Alloys and Compounds, 2019, 811, 152018.	5.5	6
45	Electrical transport properties of La0.845Sr0.155MnO3:K (0 ≤ ≤0.2) composites. Journal of Alloys and Compounds, 2019, 810, 151908.	5.5	29
46	Improved electrical transport properties of polycrystalline La _{0.8} (Ca _{0.12} Sr _{0.08})MnO ₃ ceramics by Ag ₂ O doping. RSC Advances, 2019, 9, 1939-1948.	3.6	9
47	Enhanced room temperature coefficient of resistivity (RT-TCR) and broad metal-insulator transition temperature (TMI) of La0.67Ca0.33-Ag MnO3 polycrystalline ceramics. Ceramics International, 2019, 45, 17073-17080.	4.8	16
48	Dependence of the electrical and magnetic properties of La0.845Sr0.155MnO3:Ag0.4 ceramics on its sintering time. Journal of Materials Science: Materials in Electronics, 2019, 30, 12647-12658.	2.2	8
49	Dependence on sintering temperature of structure, optical and magnetic properties of La0.625Ca0.315Sr0.06MnO3 perovskite nanoparticles. Ceramics International, 2019, 45, 17467-17475.	4.8	25
50	Effect of sintering temperature on room-temperature electrical and magnetic properties of La _{0.625} (Ca _{0.315} Sr _{0.06})MnO ₃ polycrystalline ceramics. Materials Research Express, 2019, 6, 086326.	1.6	4
51	Electrical and magnetic properties of La1â^'Sr MnO3 (0.1 ≤â‰ໝ.25) ceramics prepared by sol–gel technique. Ceramics International, 2019, 45, 16323-16330.	4.8	35
52	Improvement of electromagnetic properties at room temperature in La0.625Ca0.375-Sr MnO3:Ag0.2 (x =) Tj ETQ	1q0 0 0 rgl	BT ₈ /Overlock
53	Structure and electromagnetic properties of La0.7Ca0.3-K MnO3 polycrystalline ceramics. Ceramics International, 2019, 45, 10558-10564.	4.8	36

54Structural and electrical properties of La0.67(Ca0.3Sr0.03)MnO3 composites prepared with added Ag.5.51154Journal of Alloys and Compounds, 2019, 794, 365-373.5.511

XIANG LIU

#	Article	IF	CITATIONS
55	Modulation of room-temperature TCR and MR in La1â^'xSrxMnO3 polycrystalline ceramics via Sr doping. Journal of Sol-Gel Science and Technology, 2019, 90, 221-229.	2.4	23
56	Polycrystalline La0.845Sr0.155MnO3:Ag ceramics (0 â‰ 8 €¯x â‰ 8 €¯0.5) with room-temperature TCR and N improved uncooling photoelectric and magnetic devices. Ceramics International, 2019, 45, 12162-12168.	IR for 4.8	15
57	Electrical transport properties and enhanced broad-temperature-range low field magnetoresistance in LCMO ceramics by Sm2O3 adding. Journal of Alloys and Compounds, 2019, 790, 240-247.	5.5	19
58	Influence of Ag doping on electrical and magnetic properties of La0.67Ca0.33MnO3 polycrystalline ceramics. Ceramics International, 2019, 45, 11006-11012.	4.8	35
59	La1-Sr MnO3:Ag0.2 (0.1 â‰â€‰x â‰â€‰0.2) ceramics with large room-temperature TCR for uncoole bolometers. Journal of the European Ceramic Society, 2019, 39, 352-357.	d infrared	58
60	Improvement of room-temperature TCR and MR in polycrystalline La0.67(Ca0.27Sr0.06)MnO3 ceramics by Ag2O doping. Ceramics International, 2018, 44, 9865-9874.	4.8	46
61	Large temperature coefficient of resistance at near room temperature in Sr-doped La0.72Ca0.28MnO3:Ag0.2 polycrystalline composites. Ceramics International, 2018, 44, 1778-1784.	4.8	1
62	Enhanced room-temperature MR and TCR in polycrystalline La0.67(Ca0.33â^'xSrx)MnO3 ceramics by oxygen assisted sintering. Ceramics International, 2018, 44, 2400-2406.	4.8	51
63	First-principles study on the electronic structure and optical properties of La 0.75 Sr 0.25 MnO 3- if materials with oxygen vacancies defects. Current Applied Physics, 2018, 18, 200-208.	2.4	15
64	Influence of Ag doping on electrical and magnetic properties of La0.625(Ca0.315Sr0.06)MnO3 ceramics. Ceramics International, 2018, 44, 3915-3920.	4.8	19
65	Enhancement of temperature coefficient of resistance (TCR) and Magneto-resistance (MR) in La1–x Ca x MnO3:Ag0.2 polycrystalline composites. Journal of Sol-Gel Science and Technology, 2017, 82, 193-200.	2.4	22
66	Effect of Ca-doping on the electrical properties of La0.2Nd0.47Sr0.33MnO3 ceramics prepared by sol–gel technique. Journal of Sol-Gel Science and Technology, 2017, 82, 177-183.	2.4	11
67	Enhancement of laser-induced voltage (LIV) in La2/3Ca1/3MnO3:Ag0.04 films. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	7
68	Effects of Ag addition on the structural and electrical properties of La _{0.67} Sr _{0.33} MnO ₃ ceramics. Advances in Applied Ceramics, 2017, 116, 180-184.	1.1	3
69	Tuning room temperature T p and MR of La 1-y (Ca y-x Sr x)MnO 3 polycrystalline ceramics by Sr doping. Ceramics International, 2017, 43, 4594-4598.	4.8	49
70	Influence of Sr doping on structural, electrical and magnetic properties of La0.7Ca0.3MnO3 nanoparticles. Ceramics International, 2017, 43, 13240-13246.	4.8	29
71	Study on the electrical transport properties of La2/3Ba1/3MnO3:Ag0.04/LaAlO3 (001) films. Physica B: Condensed Matter, 2017, 504, 92-95.	2.7	1
72	Improvement in electronic and magnetic transport of La0.67Ca0.33MnO3 manganites by optimizing sintering temperature. Journal of Sol-Gel Science and Technology, 2017, 81, 177-184.	2.4	11

XIANG LIU

#	Article	IF	CITATIONS
73	Effect of A-site cationic radius on polycrystalline ceramics La x Sm0.67â^'x Sr0.33MnO3 prepared by sol–gel technique. Journal of Sol-Gel Science and Technology, 2016, 80, 474-479.	2.4	11
74	Fabrication of La x Nd0.67â^'x Sr0.33MnO3 polycrystalline ceramics by sol–gel method. Journal of Sol-Gel Science and Technology, 2016, 80, 168-173.	2.4	16
75	Target effects on electrical properties and laser induced voltages of La0.72Ca0.28MnO3 thin films prepared by pulsed laser deposition. Transactions of Nonferrous Metals Society of China, 2015, 25, 465-470.	4.2	3
76	Enhanced Electrical Properties of La \$\$_{0.7}\$\$ 0.7 (Ca \$\$_{0.2}\$\$ 0.2 Sr \$\$_{0.1}\$\$ 0.1) MnO \$\$_{3}\$ 3 Polycrystalline Composites with Ag Addition. Journal of Low Temperature Physics, 2015, 180, 356-362.	1.4	26
77	Effect of Ag addition on the magnetic and electrical properties of La0.67Ca0.33MnO3 films. Applied Surface Science, 2015, 349, 983-987.	6.1	13
78	Effect of annealing oxygen pressure on the enhancement of laser-induced voltage in La2/3Ca1/3MnO3:Ag0.04 films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 185, 105-108.	3.5	14
79	Effect of Ca doping level on the laser-induced voltages in tilted La1â^'x Ca x MnO3 (0.1Ââ‰ÂxÂâ‰Â0.7) thin film Applied Physics A: Materials Science and Processing, 2014, 114, 1075-1078.	\$ 2.3	15
80	Preparation of La0.67Ca0.33MnO3:Ag x polycrystalline by sol–gel method. Journal of Sol-Gel Science and Technology, 2014, 70, 361-365.	2.4	41
81	Laser-induced voltage (LIV) enhancement of La2/3Sr1/3MnO3 films with Ag addition. Applied Physics A: Materials Science and Processing, 2014, 115, 1371-1374.	2.3	14
82	Improved electrical properties of La2/3Ba1/3MnO3:Ag0.04 thin films by thermal annealing. Applied Physics A: Materials Science and Processing, 2014, 116, 1853-1856.	2.3	2
83	Influence of pulse laser energy on laser-induced voltage in La2/3Ca1/3MnO3:Ag0.04 films. Applied Physics A: Materials Science and Processing, 2014, 116, 561-565.	2.3	6
84	Effects of substrate-induced-strain on the electrical properties and laser induced voltages of tilted La0.67Ca0.33MnO3 thin films. Journal of Applied Physics, 2013, 114, .	2.5	11
85	High TCR (temperature coefficient of resistance) La2/3Ca1/3MnO3:Agx polycrystalline composites. Applied Surface Science, 2013, 283, 851-855.	6.1	54
86	Influence of synthesis methods and calcination temperature on electrical properties of La1â^'xCaxMnO3 (x=0.33 and 0.28) ceramics. Ceramics International, 2013, 39, 7839-7843.	4.8	37
87	Effect of Thermal Annealing on Structural, Electrical, and Magnetic Properties of Ag-doped La0.67Ca0.33MnO3Thin Films Grown on LaAlO3Substrates. Japanese Journal of Applied Physics, 2006, 45, 727-729.	1.5	9
88	Preparation and Properties of La _{2/3} Sr _{1/3} MnO ₃ : Ag _x Polycrystalline Composites. Key Engineering Materials, 0, 519, 45-48.	0.4	1
89	Effects of Film Thickness on Laser Induced Voltage (LIV) of La _{2/3} Ca _{1/3} MnO ₃ :Ag _{0.05Thin Films Grown on LaAlO₃ Substrates. Advanced Materials Research, 0, 721, 54-58.}	ıb> 0.3	1