
Martin P Poirier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11554940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heat tolerance and the validity of occupational heat exposure limits in women during moderate-intensity work. Applied Physiology, Nutrition and Metabolism, 2022, 47, 711-724.	1.9	6
2	Heat Tolerance and Occupational Heat Exposure Limits in Older Men with and without Type 2 Diabetes or Hypertension. Medicine and Science in Sports and Exercise, 2021, 53, 2196-2206.	0.4	24
3	Effects of shortâ€term heat acclimation on wholeâ€body heat exchange and local nitric oxide synthase― and cyclooxygenaseâ€dependent heat loss responses in exercising older men. Experimental Physiology, 2021, 106, 450-462.	2.0	2
4	Type 2 diabetes does not exacerbate body heat storage in older adults during brief, extreme passive heat exposure. Temperature, 2020, 7, 263-269.	3.0	8
5	Evidence for ageâ€related differences in heat acclimatisation responsiveness. Experimental Physiology, 2020, 105, 1491-1499.	2.0	15
6	Self-reported physical activity level does not alter whole-body total heat loss independently of aerobic fitness in young adults during exercise in the heat. Applied Physiology, Nutrition and Metabolism, 2019, 44, 99-102.	1.9	5
7	Exercise Heat Stress in Patients With and Without Type 2 Diabetes. JAMA - Journal of the American Medical Association, 2019, 322, 1409.	7.4	29
8	Impaired whole-body heat loss in type 1 diabetes during exercise in the heat: a cause for concern?. Diabetologia, 2019, 62, 1087-1089.	6.3	7
9	The Hexoskin physiological monitoring shirt does not impair whole-body heat loss during exercise in hot-dry conditions. Applied Physiology, Nutrition and Metabolism, 2019, 44, 332-335.	1.9	4
10	Menstrual cycle phase does not modulate whole body heat loss during exercise in hot, dry conditions. Journal of Applied Physiology, 2019, 126, 286-293.	2.5	34
11	A Preliminary Analysis of the Interâ€Individual Determinants of Wholeâ€Body Heat Exchange in 100 Young Men and Women during Exercise in the Heat. FASEB Journal, 2019, 33, 842.8.	0.5	0
12	Fitnessâ€related differences in the rate of wholeâ€body total heat loss in exercising young healthy women are heatâ€load dependent. Experimental Physiology, 2018, 103, 312-317.	2.0	20
13	Physical characteristics cannot be used to predict cooling time using cold-water immersion as a treatment for exertional hyperthermia. Applied Physiology, Nutrition and Metabolism, 2018, 43, 857-860.	1.9	7
14	Postexercise whole-body sweating increases during muscle metaboreceptor activation in young men. Applied Physiology, Nutrition and Metabolism, 2018, 43, 423-426.	1.9	1
15	Fitnessâ€related differences in the rate of wholeâ€body evaporative heat loss in exercising men are heatâ€load dependent. Experimental Physiology, 2018, 103, 101-110.	2.0	29
16	Screening criteria for increased susceptibility to heat stress during work or leisure in hot environments in healthy individuals aged 31–70 years. Temperature, 2018, 5, 86-99.	3.0	50
17	Oxidative stress does not influence local sweat rate during highâ€intensity exercise. Experimental Physiology, 2018, 103, 172-178.	2.0	6
18	Defining Acceptable Coldâ€Water Immersion Times for the Treatment of Exertional Hyperthermia When Rectal Temperature Measurements are not Available. FASEB Journal, 2018, 32, 859.4.	0.5	0

MARTIN P POIRIER

#	Article	IF	CITATIONS
19	Using heat as a therapeutic tool for the aging vascular tree. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H806-H807.	3.2	3
20	Aging Impairs Whole-Body Heat Loss in Women under Both Dry and Humid Heat Stress. Medicine and Science in Sports and Exercise, 2017, 49, 2324-2332.	0.4	26
21	Increasing age is a major risk factor for susceptibility to heat stress during physical activity. Applied Physiology, Nutrition and Metabolism, 2017, 42, 1232-1235.	1.9	23
22	Hyperthermia and cardiovascular strain during an extreme heat exposure in young versus older adults. Temperature, 2017, 4, 79-88.	3.0	80
23	Do the Threshold Limit Values for Work in Hot Conditions Adequately Protect Workers?. Medicine and Science in Sports and Exercise, 2016, 48, 1187-1196.	0.4	38
24	Exploring the mechanisms underpinning sweating: the development of a specialized ventilated capsule for use with intradermal microdialysis. Physiological Reports, 2016, 4, e12738.	1.7	40
25	Heart rate variability during high heat stress: a comparison between young and older adults with and without Type 2 diabetes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R669-R675.	1.8	30
26	Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation. Applied Physiology, Nutrition and Metabolism, 2016, 41, 816-824.	1.9	21
27	The physical demands of electrical utilities work in North America. Journal of Occupational and Environmental Hygiene, 2016, 13, 60-70.	1.0	30
28	Whole-Body Heat Exchange during Heat Acclimation and Its Decay. Medicine and Science in Sports and Exercise, 2015, 47, 390-400.	0.4	56
29	Response. Medicine and Science in Sports and Exercise, 2015, 47, 1318.	0.4	1
30	At What Level of Heat Load Are Age-Related Impairments in the Ability to Dissipate Heat Evident in Females?. PLoS ONE, 2015, 10, e0119079.	2.5	49
31	Aging impairs heat loss, but when does it matter?. Journal of Applied Physiology, 2015, 118, 299-309.	2.5	83
32	Temperature of Ingested Water during Exercise Does Not Affect Body Heat Storage. Medicine and Science in Sports and Exercise, 2015, 47, 1272-1280.	0.4	16
33	The Influence of Arc-Flash and Fire-Resistant Clothing on Thermoregulation during Exercise in the Heat. Journal of Occupational and Environmental Hygiene, 2015, 12, 654-667.	1.0	15
34	An Evaluation of the Physiological Strain Experienced by Electrical Utility Workers in North America. Journal of Occupational and Environmental Hygiene, 2015, 12, 708-720.	1.0	54
35	Changes in heart rate variability during the induction and decay of heat acclimation. European Journal of Applied Physiology, 2014, 114, 2119-2128.	2.5	46
36	Water Immersion in the Treatment of Exertional Hyperthermia. Medicine and Science in Sports and Exercise, 2014, 46, 1727-1735.	0.4	33

3