Susan M Rimmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11554257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA). Chemical Geology, 2004, 206, 373-391.	3.3	580
2	Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 215, 125-154.	2.3	310
3	Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction. Chemical Geology, 2008, 257, 16-25.	3.3	144
4	Coal metamorphism by igneous intrusion in the Raton Basin, CO and NM: Implications for generation of volatiles. International Journal of Coal Geology, 2007, 71, 15-27.	5.0	111
5	Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry, Springfield (No. 5) (Pennsylvanian) coal, Illinois Basin. International Journal of Coal Geology, 2009, 79, 74-82.	5.0	87
6	No evidence for thermogenic methane release in coal from the Karoo-Ferrar large igneous province. Earth and Planetary Science Letters, 2009, 277, 204-212.	4.4	71
7	Influence of maceral content on δ13C and δ15N in a Middle Pennsylvanian coal. Chemical Geology, 2006, 225, 77-90.	3.3	67
8	Geochemical and petrographic analysis of graphitized coals from Central Hunan, China. International Journal of Coal Geology, 2018, 195, 267-279.	5.0	59
9	Effects of rapid thermal alteration on coal: Geochemical and petrographic signatures in the Springfield (No. 5) Coal, Illinois Basin. International Journal of Coal Geology, 2014, 131, 214-226.	5.0	58
10	Acid solubility and affinities of trace elements in the high-Ge coals from Wulantuga (Inner Mongolia) and Lincang (Yunnan Province), China. International Journal of Coal Geology, 2017, 178, 39-55.	5.0	53
11	Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 215, 125-154.	2.3	47
12	Origin of an Underclay as Revealed by Vertical Variations in Mineralogy and Chemistry. Clays and Clay Minerals, 1982, 30, 422-430.	1.3	44
13	Some genetic implications of silica and aluminosilicates in peat and coal. International Journal of Coal Geology, 1984, 3, 293-314.	5.0	44
14	Rock-eval pyrolysis and vitrinite reflectance trends in the Cleveland Shale Member of the Ohio Shale, eastern Kentucky. Organic Geochemistry, 1993, 20, 735-745.	1.8	39
15	Petrographic and Geochemical Anatomy of Lithotypes from the Blue Gem Coal Bed, Southeastern Kentucky. Energy & Fuels, 1994, 8, 719-728.	5.1	39
16	Notes on the mechanisms of coal metamorphism in the Pennsylvania Anthracite Fields. International Journal of Coal Geology, 2019, 202, 161-170.	5.0	36
17	An occurrence of coked bitumen, Raton Formation, Purgatoire River Valley, Colorado, U.S.A International Journal of Coal Geology, 2015, 141-142, 63-73.	5.0	34
18	Geochemical and petrographic alteration of rapidly heated coals from the Herrin (No. 6) Coal Seam, Illinois Basin. International Journal of Coal Geology, 2016, 165, 243-256.	5.0	34

SUSAN M RIMMER

#	Article	IF	CITATIONS
19	Micro-Raman Spectroscopy of Microscopically Distinguishable Components of Naturally Graphitized Coals from Central Hunan Province, China. Energy & Fuels, 2019, 33, 1037-1048.	5.1	34
20	Geochemistry of the blue gem coal bed, Knox county, Kentucky. International Journal of Coal Geology, 1991, 18, 211-231.	5.0	33
21	Redox conditions associated with organic carbon accumulation in the Late Devonian New Albany Shale, west-central Kentucky, Illinois Basin. International Journal of Coal Geology, 2018, 190, 42-55.	5.0	31
22	Coal rank trends in the Central Appalachian coalfield: Virginia, West Virginia, and Kentucky. Organic Geochemistry, 1991, 17, 161-173.	1.8	29
23	The influence of depositional environments on coal petrographic composition of the Lower Kittaning seam, western Pennsylvania. Organic Geochemistry, 1988, 12, 375-387.	1.8	27
24	DISTINGUISHING "NEW" FROM "OLD" ORGANIC CARBON IN RECLAIMED COAL MINE SITES USING THERMOGRAVIMETRY. Soil Science, 2007, 172, 302-312.	0.9	26
25	Petrography and palynology of the Blue Gem coal bed (Middle Pennsylvanian), southeastern Kentucky, USA. International Journal of Coal Geology, 2000, 42, 159-184.	5.0	24
26	Carbon isotope analysis of whole-coal and vitrinite from intruded coals from the Illinois Basin: No isotopic evidence for thermogenic methane generation. Chemical Geology, 2017, 453, 1-11.	3.3	24
27	Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky. International Journal of Coal Geology, 2018, 192, 73-82.	5.0	24
28	DISTINGUISHING "NEW" FROM "OLD" ORGANIC CARBON ON RECLAIMED COAL MINE SITES USING THERMOGRAVIMETRY. Soil Science, 2007, 172, 292-301.	0.9	22
29	Palynological and bulk geochemical constraints on the paleoceanographic conditions across the Frasnian–Famennian boundary, New Albany Shale, Indiana. International Journal of Coal Geology, 2007, 71, 72-84.	5.0	22
30	Anatomy of an intruded coal, II: effect of contact metamorphism on organic δ13C and implications for the release of thermogenic methane, Springfield (No. 5) Coal, Illinois Basin. International Journal of Coal Geology, 2016, 158, 129-136.	5.0	22
31	Distribution of Trace Elements in Fractions after Micronization and Density-Gradient Centrifugation of High-Ge Coals from the Wulantuga and Lincang Ge Ore Deposits in China. Energy & Fuels, 2017, 31, 11818-11837.	5.1	21
32	The impact of rapid heating by intrusion on the geochemistry and petrography of coals and organic-rich shales in the Illinois Basin. International Journal of Coal Geology, 2018, 187, 45-53.	5.0	21
33	Raman spectroscopy of intruded coals from the Illinois Basin: Correlation with rank and estimated alteration temperature. International Journal of Coal Geology, 2020, 219, 103369.	5.0	21
34	Constraints on the Emplacement and Uplift History of the Pine Mountain Thrust Sheet, Eastern Kentucky: Evidence from Coal Rank Trends. Journal of Geology, 1990, 98, 43-51.	1.4	21
35	Distributions and associations of selected trace elements in the lower Kittanning seam, western Pennsylvania, U.S.A International Journal of Coal Geology, 1991, 17, 189-212.	5.0	20
36	Organic petrography of Mississippian and Devonian shales in east-central Kentucky. Fuel, 1992, 71, 267-271.	6.4	16

SUSAN M RIMMER

#	Article	IF	CITATIONS
37	Investigation of the carbon structure of naturally graphitized coals from Central Hunan, China, by density-gradient centrifugation, X-ray diffraction, and high-resolution transmission electron microscopy. International Journal of Coal Geology, 2020, 232, 103628.	5.0	15
38	Controls on organic matter accumulation in the Bakken Formation, Williston Basin, USA. Chemical Geology, 2021, 586, 120588.	3.3	14
39	Effect of process solids on secondary reactions during oil shale retorting. Fuel, 1991, 70, 1352-1356.	6.4	9
40	Revisiting the thermally metamorphosed coals of the Transantarctic Mountains, Antarctica. International Journal of Coal Geology, 2020, 228, 103550.	5.0	9
41	Migmatite-like textures in anthracite: Further evidence for low-grade metamorphic melting and resolidification in high-rank coals. Geoscience Frontiers, 2021, 12, 101122.	8.4	5
42	Are Redox-Sensitive Geochemical Proxies Valid in Mature Shales?. , 2018, , .		4
43	Characteristics of processed shales affecting oil yield loss to coke. Fuel, 1992, 71, 1427-1432.	6.4	2
44	Latest Permian chars may derive from wildfires, not coal combustion: REPLY. Geology, 2015, 43, e363-e363.	4.4	2
45	Petrology of the Pittsburgh coalbed (Gzhelian (Stephanian C), Monongahela Group/Formation) in Pennsylvania, West Virginia, and Ohio. International Journal of Coal Geology, 2022, 249, 103907.	5.0	0