
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1155343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Diet Supplementation with <i>Enterococcus Durans</i> ED26E/7 and its Durancin ED26E/7 on Growth Performance, Caecal Enzymatic Activity, Jejunal Morphology and Meat Properties of Broiler Rabbits. Annals of Animal Science, 2022, 22, 221-235.	0.6	3
2	Thymol in fattening rabbit diet, its bioavailability and effects on intestinal morphology, microbiota from caecal content and immunity. Journal of Animal Physiology and Animal Nutrition, 2022, 106, 368-377.	1.0	7
3	Effect of enterocin M and durancin ED26E/7 supplementation on blood parameters, immune response and jejunal morphometry in rabbits. Journal of Animal Physiology and Animal Nutrition, 2022, 106, 378-386.	1.0	1
4	Susceptibility to Bacteriocins of Multiresistant, mecA Gene Possessing Staphylococcus pseudintermedius Strains from Lesions on Dogs in Vojvodina (Serbia). Microbial Drug Resistance, 2022, , .	0.9	0
5	Antimicrobial Susceptibility to Natural Substances of <i>Campylobacter jejuni</i> and <i>Campylobacter coli</i> Isolated from Italian Poultry. Foodborne Pathogens and Disease, 2022, 19, 266-271.	0.8	3
6	Microbiota, Phagocytic Activity, Biochemical Parameters and Parasite Control in Horses with Application of Autochthonous, Bacteriocin-Producing, Probiotic Strain Enterococcus faecium EF 412. Probiotics and Antimicrobial Proteins, 2022, , 1.	1.9	2
7	Horses as a source of bioactive fecal strains Enterococcus mundtii. Veterinary Research Communications, 2022, , 1.	0.6	3
8	Bacteriocin-Producing Strain Lactiplantibacillus plantarum LP17L/1 Isolated from Traditional Stored Ewe's Milk Cheese and Its Beneficial Potential. Foods, 2022, 11, 959.	1.9	2
9	Modulation of lymphocyte subpopulations in the small intestine of mice treated with probiotic bacterial strains and infected with <i>Trichinella spiralis</i> . Journal of Applied Microbiology, 2022, ,	1.4	1
10	The Effect of Enterococcus faecium AL41 on the Acute Phase Proteins and Selected Mucosal Immune Molecules in Broiler Chickens. Life, 2022, 12, 598.	1.1	2
11	Preventive Potential of Dipeptide Enterocin A/P on Rabbit Health and Its Effect on Growth, Microbiota, and Immune Response. Animals, 2022, 12, 1108.	1.0	4
12	Enterocin 7420 and Sage in Rabbit Diet and Their Effect on Meat Mineral Content and Physico-Chemical Properties. Microorganisms, 2022, 10, 1094.	1.6	1
13	Enterocin M in Interaction in Broiler Rabbits with Autochthonous, Biofilm-Forming Enterococcus hirae Kr8 Strain. Probiotics and Antimicrobial Proteins, 2022, 14, 845-853.	1.9	2
14	Enterococcal Species Associated with Slovak Raw Goat Milk, Their Safety and Susceptibility to Lantibiotics and Durancin ED26E/7. Processes, 2021, 9, 681.	1.3	6
15	Lacticaseibacilli and Lactococci from Slovak Raw Goat Milk and their Potential. Scientia Agriculturae Bohemica, 2021, 52, 19-28.	0.3	Ο
16	Enterocins as Novel Feed Additives in Rabbit Diet: Enterocin Ent M and Durancin Ent ED26E/7, Their Combination, and Effects on Microbiota, Caecal Fermentation, and Enzymatic Activity. Probiotics and Antimicrobial Proteins, 2021, 13, 1433-1442.	1.9	4
17	Microbiome Associated with Slovak Traditional Ewe's Milk Lump Cheese. Processes, 2021, 9, 1603.	1.3	5
18	Effect of Sustained Administration of Thymol on Its Bioaccessibility and Bioavailability in Rabbits. Animals, 2021, 11, 2595.	1.0	6

#	Article	IF	CITATIONS
19	Effect of Enterococcus faecium AL41 (CCM8558) and Its Enterocin M on the Physicochemical Properties and Mineral Content of Rabbit Meat. Agriculture (Switzerland), 2021, 11, 1045.	1.4	4
20	Effect of enterocins against methicillin-resistant animal-derived staphylococci. Veterinary Research Communications, 2021, 45, 467-473.	0.6	3
21	Slovak Local Ewe's Milk Lump Cheese, a Source of Beneficial Enterococcus durans Strain. Foods, 2021, 10, 3091.	1.9	3
22	The effect of dietary supplementation of sage plant extract and Enterocin M on the mucus in the the small intestine and caecum in rabbits. Polish Journal of Veterinary Sciences, 2021, 24, 23-28.	0.2	1
23	Characterisation of Faecal Staphylococci from Roe Deer (Capreolus capreolus) and Red Deer (Cervus) Tj ETQq1 3 302-310.	l 0.78431 1.9	4 rgBT /Overla 4
24	Some safety aspects of enterococci isolated from Slovak lactic acid dairy product "žinÄicaâ€. Folia Microbiologica, 2020, 65, 79-85.	1.1	8
25	Enterocin M and Sage Supplementation in Post-weaning Rabbits: Effects on Growth Performance, Caecal Microbiota, Fermentation and Enzymatic Activity. Probiotics and Antimicrobial Proteins, 2020, 12, 732-739.	1.9	8
26	Benefits of Enterocin M and Sage Combination on the Physico-chemical Traits, Fatty Acid, Amino Acid, and Mineral Content of Rabbit Meat. Probiotics and Antimicrobial Proteins, 2020, 12, 1235-1245.	1.9	12
27	Bacteriocin production and distribution of bacteriocin-encoding genes in enterococci from dogs. International Journal of Antimicrobial Agents, 2020, 55, 105859.	1.1	10
28	Susceptibility to Bacteriocins in Biofilm-Forming, Variable Staphylococci Isolated from Local Slovak Ewes' Milk Lump Cheeses. Foods, 2020, 9, 1335.	1.9	12
29	Autochtonous Strain Enterococcus faecium EF2019(CCM7420), Its Bacteriocin and Their Beneficial Effects in Broiler Rabbits—A Review. Animals, 2020, 10, 1188.	1.0	22
30	Effect of Thymol Addition and Withdrawal on Some Blood Parameters, Antioxidative Defence System and Fatty Acid Profile in Rabbit Muscle. Animals, 2020, 10, 1248.	1.0	12
31	Enterococcus mundtii Isolated from Slovak Raw Goat Milk and Its Bacteriocinogenic Potential. International Journal of Environmental Research and Public Health, 2020, 17, 9504.	1.2	15
32	Enterocin M-Producing Enterococcus faecium CCM 8558 Demonstrating Probiotic Properties in Horses. Probiotics and Antimicrobial Proteins, 2020, 12, 1555-1561.	1.9	8
33	Effect of beneficial strain <i>Enterococcus faecium</i> EF9a isolated from Pannon White rabbit on growth performance and meat quality of rabbits. Italian Journal of Animal Science, 2020, 19, 650-655.	0.8	7
34	Enterocin Structural Gene Screening in Enterococci from Pannon White Breed Rabbits. Probiotics and Antimicrobial Proteins, 2020, 12, 1246-1252.	1.9	3
35	Can Enterocin M in Combination with Sage Extract Have Beneficial Effect on Microbiota, Blood Biochemistry, Phagocytic Activity and Jejunal Morphometry in Broiler Rabbits?. Animals, 2020, 10, 115.	1.0	18
36	Controversial Aspects Displayed by Enterococci: Probiotics or Pathogens?. BioMed Research International, 2020, 2020, 1-3.	0.9	15

#	Article	IF	CITATIONS
37	Probiotic bacteria can modulate murine macrophage's superoxide production in <i>Trichinella spiralis</i> infection. Helminthologia, 2020, 57, 226-234.	0.3	6
38	Short communication: Antimicrobial potential of Lactobacillus plantarum strains isolated from Slovak raw sheep milk cheeses. Journal of Dairy Science, 2020, 103, 6900-6903.	1.4	16
39	Susceptibility to Enterocins and Lantibiotic Bacteriocins of Biofilm-Forming Enterococci Isolated from Slovak Fermented Meat Products Available on the Market. International Journal of Environmental Research and Public Health, 2020, 17, 9586.	1.2	2
40	Beneficial effects of Enterococcus faecium EF9a administration in rabbit diet. World Rabbit Science, 2020, 28, 169.	0.1	6
41	Relation to enterocins and herbal extracts of fecal hemolytic Escherichia coli from domestic ducks detected with MALDI-TOF mass spectrometry. Poultry Science, 2019, 98, 5925-5931.	1.5	1
42	Virulence Factor Genes Incidence among Enterococci from Sewage Sludge in Eastern Slovakia following Safety Aspect. BioMed Research International, 2019, 2019, 1-5.	0.9	3
43	Oral administration of bacteriocin-producing and non-producing strains of Enterococcus faecium in dogs. Applied Microbiology and Biotechnology, 2019, 103, 4953-4965.	1.7	9
44	Lantibiotic Nisin Applied in Broiler Rabbits and Its Effect on the Growth Performance and Carcass Quality. Probiotics and Antimicrobial Proteins, 2019, 11, 1414-1417.	1.9	7
45	Enterococci Isolated from Trout in the Bukovec Water Reservoir and Čierny Váh River in Slovakia and Their Safety Aspect. BioMed Research International, 2019, 2019, 1-7.	0.9	0
46	Fecal coagulase-negative staphylococci from horses, their species variability, and biofilm formation. Folia Microbiologica, 2019, 64, 719-726.	1.1	9
47	Domestic fowl of ducks, a source of faecal bioactive Enterococcus hirae strains. Polish Journal of Veterinary Sciences, 2019, 22, 505-512.	0.2	2
48	Occurrence of <i>Enterocin</i> Genes in Enterococci from Slovak Milk Product ŽinÄica. Scientia Agriculturae Bohemica, 2019, 50, 197-202.	0.3	2
49	Enterococci from pannon white rabbits: detection, identification, biofilm and screening for virulence factors. World Rabbit Science, 2019, 27, 31.	0.1	10
50	Enterocin M and its Beneficial Effects in Horses—a Pilot Experiment. Probiotics and Antimicrobial Proteins, 2018, 10, 420-426.	1.9	17
51	Evaluation of Probiotic Lactobacillus fermentum CCM 7421 Administration with Alginite in Dogs. Probiotics and Antimicrobial Proteins, 2018, 10, 577-588.	1.9	5
52	Relation to enterocins of variable Aeromonas species isolated from trouts of Slovakian aquatic sources and detected by MALDI-TOF mass spectrometry. Folia Microbiologica, 2018, 63, 749-755.	1.1	5
53	The anti-parasitic effect of probiotic bacteria <i>via</i> limiting the fecundity of <i>Trichinella spiralis</i> female adults. Helminthologia, 2018, 55, 102-111.	0.3	17
54	Assessment of biofilm formation by faecal strains of Enterococcus hirae from different species of animals. Polish Journal of Veterinary Sciences, 2018, 21, 747-754.	0.2	6

#	Article	IF	CITATIONS
55	Effect of lantibiotic gallidermin against biogenic amine-producing faecal staphylococci from ostriches and pheasants. Folia Microbiologica, 2017, 62, 229-235.	1.1	5
56	Sensitivity to Enterocins of Biogenic Amine-Producing Faecal Enterococci from Ostriches and Pheasants. Probiotics and Antimicrobial Proteins, 2017, 9, 483-491.	1.9	6
57	Safety assessment of commensal enterococci from dogs. Folia Microbiologica, 2017, 62, 491-498.	1.1	22
58	<i>In vivo</i> Model Experiment Using Laying Hens Treated with <i>Enterococcus faecium</i> EM41 from Ostrich Faeces and its Enterocin EM41. Macedonian Veterinary Review, 2017, 40, 157-166.	0.2	2
59	Health benefits observed after probiotic Lactobacillus fermentum CCM 7421 application in dogs. Applied Microbiology and Biotechnology, 2017, 101, 6309-6319.	1.7	26
60	Decarboxylaseâ€positive <i>Enterococcus faecium</i> strains isolated from rabbit meat and their sensitivity to enterocins. Food Science and Nutrition, 2017, 5, 31-37.	1.5	8
61	Beneficial effect of bacteriocin-producing strain Enterococcus durans ED 26E/7 in model experiment using broiler rabbits. Czech Journal of Animal Science, 2017, 62, 168-177.	0.5	12
62	Pilot experiment in chickens challenged with Campylobacter jejuni CCM6191 administered enterocin M-producing probiotic strain Enterococcus faecium CCM8558 to check its protective effect. Czech Journal of Animal Science, 2017, 62, 491-500.	0.5	7
63	Natural Preservatives to Improve Food Quality and Safety. Journal of Food Quality, 2017, 2017, 1-3.	1.4	54
64	Traditional Meat Products: Improvement of Quality and Safety. Journal of Food Quality, 2017, 2017, 1-2.	1.4	6
65	Virulence factor genes possessing Enterococcus faecalis strains from rabbits and their sensitivity to enterocins. World Rabbit Science, 2017, 25, 63.	0.1	2
66	Staphylococci Related to Farm Ostriches and Their Sensitivity to Enterocins. Foodborne Pathogens and Disease, 2016, 13, 142-147.	0.8	4
67	Benefits of combinative application of probiotic, enterocin M-producing strain Enterococcus faecium AL41 and Eleutherococcus senticosus in rabbits. Folia Microbiologica, 2016, 61, 169-177.	1.1	15
68	Escherichia coli strains from ostriches and their sensitivity to antimicrobial substances. Polish Journal of Veterinary Sciences, 2016, 19, 415-423.	0.2	5
69	Sensitivity to Enterocins of Thermophilic <i>Campylobacter</i> spp. from Different Poultry Species. Foodborne Pathogens and Disease, 2016, 13, 668-673.	0.8	22
70	Effect of probiotic bacteria on phagocytosis and respiratory burst activity of blood polymorphonuclear leukocytes (PMNL) in mice infected with Trichinella spiralis. Veterinary Parasitology, 2016, 231, 69-76.	0.7	27
71	Enterococci isolated from farm ostriches and their relation to enterocins. Folia Microbiologica, 2016, 61, 275-281.	1.1	6
72	Dietary supplementation of a bacteriocinogenic and probiotic strain of Enterococcus faecium CCM7420 and its effect on the mineral content and quality of Musculus longissimus dorsi in rabbits. Animal Production Science, 2016, 56, 2140.	0.6	10

#	Article	IF	CITATIONS
73	Bioactive Enterococci Isolated from Slovak Ewes' Lump Cheese. Scientia Agriculturae Bohemica, 2016, 47, 187-193.	0.3	2
74	Characteristic and susceptibility to enterocins of enterococci in pheasants possessing virulence factor genes. Polish Journal of Veterinary Sciences, 2015, 18, 507-514.	0.2	9
75	Food-producing animals and their health in relation to human health. Microbial Ecology in Health and Disease, 2015, 26, 25876.	3.8	26
76	Use of bacteriocin-producing, probiotic strain <i>Enterococcus faecium </i> AL41 to control intestinal microbiota in farm ostriches. Letters in Applied Microbiology, 2015, 60, 531-535.	1.0	23
77	Experimental application of Lactobacillus fermentum CCM 7421 in combination with chlorophyllin in dogs. Applied Microbiology and Biotechnology, 2015, 99, 8681-8690.	1.7	6
78	Virulence factors genes in enterococci isolated from beavers (Castor fiber). Folia Microbiologica, 2015, 60, 151-154.	1.1	12
79	Effect of rabbit-origin enterocin-producing probiotic strain Enterococcus faecium CCM7420 application on growth performance and gut morphometry in rabbits. Czech Journal of Animal Science, 2015, 60, 509-512.	0.5	16
80	Beneficial Effect of Lantibiotic Nisin in Rabbit Husbandry. Probiotics and Antimicrobial Proteins, 2014, 6, 41-46.	1.9	31
81	Can enterocins affect phagocytosis and glutathione-peroxidase in rabbits?. Open Life Sciences, 2013, 8, 730-734.	0.6	10
82	Leukocytic response and composition of enteral microbiota in chickens fed a sage extract supplemented diet and infected with <i>Salmonella</i> Enteritidis PT4. Food and Agricultural Immunology, 2013, 24, 33-45.	0.7	3
83	Staphylococcal Species Detected in Free-Living Trouts of East Slovakian Water Sources and their Relation to Antimicrobials. Bulletin of the Veterinary Institute in Pulawy = Biuletyn Instytutu Weterynarii W Pulawach, 2013, 57, 167-171.	0.4	2
84	Synbiotic administration of canine-derived strain <i>Lactobacillus fermentum</i> CCM 7421 and inulin to healthy dogs. Canadian Journal of Microbiology, 2013, 59, 347-352.	0.8	11
85	Combined administration of bacteriocinproducing, probiotic strain Enterococcus faecium CCM7420 with Eleutherococcus senticosus and their effect in rabbits. Polish Journal of Veterinary Sciences, 2013, 16, 619-627.	0.2	14
86	Antibacterial activity of oregano and sage plant extracts against decarboxylase-positive enterococci isolated from rabbit meat. Potravinarstvo, 2013, 7, .	0.5	2
87	Decarboxylation activity of enterococci isolated from rabbit meat and staphylococci isolated from trout intestines. Veterinary Microbiology, 2012, 159, 438-442.	0.8	15
88	Leukocytic responses and intestinal mucin dynamics of broilers protected with Enterococcus faecium EF55 and challenged with Salmonella Enteritidis. Research in Veterinary Science, 2012, 93, 195-201.	0.9	46
89	Enterococcus faecium AL 41: Its Enterocin M and Their Beneficial Use in Rabbits Husbandry. Probiotics and Antimicrobial Proteins, 2012, 4, 243-249.	1.9	52
90	Clinical streptococci and their sensitivity to enterocins produced by different strains of the species Enterococcus faecium (Short Communication). Acta Microbiologica Et Immunologica Hungarica, 2012, 59, 21-27.	0.4	0

#	Article	IF	CITATIONS
91	Effectivity of freeze-dried form of Lactobacillus fermentum AD1-CCM7421 in dogs. Folia Microbiologica, 2012, 57, 347-350.	1.1	18
92	Microbial status and quality of rabbit meat after rabbits feed supplementation with phyto-additives. Potravinarstvo, 2012, 6, 41-44.	0.5	1
93	Application of nisin into slovak fermented salami Púchov. Potravinarstvo, 2012, 6, 32-35.	0.5	0
94	Antibiotic Resistance and Virulence Factors among Enterococci Isolated from Chouriço, a Traditional Portuguese Dry Fermented Sausage. Journal of Food Protection, 2011, 74, 465-469.	0.8	34
95	Effect of combined administration of enterocin 4231 and sage in rabbits. Polish Journal of Veterinary Sciences, 2011, 14, 359-66.	0.2	14
96	Potential Applications of Probiotic, Bacteriocin-Producing Enterococci and Their Bacteriocins. , 2011, , 39-61.		3
97	Enterocin 4231 produced by Enterococcus faecium CCM 4231 and its use in rabbits. Acta Veterinaria, 2011, 61, 523-529.	0.2	9
98	Effect of enterocin 4231 in Slovak fermented salami Púchov after its experimental inoculation with Listeria innocua Li1. Acta Scientiarum Polonorum, Technologia Alimentaria, 2011, 10, 423-31.	0.2	4
99	The effect of pH, bile and calcium on the adhesion ability of probiotic enterococci of animal origin to the porcine jejunal epithelial cell line IPEC-J2. Anaerobe, 2010, 16, 120-124.	1.0	285
100	Effect of preventive application of Enterococcus faecium EF55 on intestinal mucosa during salmonellosis in chickens. Czech Journal of Animal Science, 2010, 55, 42-47.	0.5	10
101	Quality of rabbit meat and phyto-additives. Czech Journal of Food Sciences, 2010, 28, 161-167.	0.6	45
102	Distribution of Aminogenic Activity among Potential Autochthonous Starter Cultures for Dry Fermented Sausages. Journal of Food Protection, 2010, 73, 524-528.	0.8	39
103	Staphylococcus xylosus S03/1M/1/2, bacteriocin-producing meat starter culture or additive. Food Control, 2010, 21, 970-973.	2.8	21
104	Pseudomonads from rabbits and their sensitivity to antibiotics and natural antimicrobials. Research in Veterinary Science, 2010, 88, 203-207.	0.9	6
105	Effect of Enterococcus faecium AL41 and Thymus vulgaris essential oil on small intestine integrity and antioxidative status of laying hens. Research in Veterinary Science, 2010, 89, 257-261.	0.9	17
106	Enterococcus faecium CCM7420, bacteriocin PPB CCM7420 and their effect in the digestive tract of rabbits. Czech Journal of Animal Science, 2009, 54, 376-386.	0.5	53
107	Antimicrobial activity of Enterococcus faecium EF 55 against Salmonella Enteritidis in chicks. Acta Veterinaria Hungarica, 2009, 57, 13-24.	0.2	23
108	Enterococci from piglets — Probiotic properties and responsiveness to natural antibacterial substances. Folia Microbiologica, 2009, 54, 538-544.	1.1	11

#	Article	IF	CITATIONS
109	Effect of inoculated grass silages on rumen fermentation and lipid metabolism in an artificial rumen (RUSITEC). Animal Feed Science and Technology, 2009, 151, 55-64.	1.1	25
110	Probiotic potential of enterococci isolated from canine feed. Folia Microbiologica, 2008, 53, 84-88.	1.1	16
111	Occurrence of the structural enterocin A, P, B, L50B genes in enterococci of different origin. Veterinary Microbiology, 2008, 132, 293-301.	0.8	53
112	Potential of enterococci isolated from horses. Anaerobe, 2008, 14, 234-236.	1.0	40
113	Experimental Application of Sage in Rabbit Husbandry. Acta Veterinaria Brno, 2008, 77, 581-588.	0.2	17
114	A new probiotic and bacteriocin-producing strain of Enterococcus faecium EF9296 and its use in grass ensiling. Czech Journal of Animal Science, 2008, 53, 335-344.	0.5	19
115	Species of Enterococcus faecalis associated with free-living rodents. Folia Microbiologica, 2008, 53, 173-178.	1.1	0
116	Traditional dry fermented sausages produced in small-scale processing units in Mediterranean countries and Slovakia. 1: Microbial ecosystems of processing environments. Meat Science, 2007, 77, 570-579.	2.7	92
117	In vitro study on bacteriocin production of Enterococci associated with chickens. Anaerobe, 2007, 13, 228-237.	1.0	77
118	Properties of the strainsEnterococcus haemoperoxidus andE. moraviensis, new species among enterococci. Folia Microbiologica, 2007, 52, 273-9.	1.1	4
119	Characteristics of Staphylococcus aureus isolated from rabbits. Folia Microbiologica, 2007, 52, 291-6.	1.1	7
120	Bacteriocin Activity of Enterococci from Rabbits. Veterinary Research Communications, 2007, 31, 143-152.	0.6	30
121	Isolation and characterization of a new bacteriocin, termed enterocin M, produced by environmental isolate Enterococcus faecium AL41. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 533-537.	1.4	76
122	Characterization of Staphylococcus xylosus and Staphylococcus carnosus isolated from Slovak meat products. Meat Science, 2006, 73, 559-564.	2.7	57
123	Bacteriocin-producing strain of Enterococcus faecium EK 13 with probiotic character and its application in the digestive tract of rabbits. Biologia (Poland), 2006, 61, 779-782.	0.8	16
124	Oral application ofEnterococcus faecium strain EE3 in healthy dogs. Folia Microbiologica, 2006, 51, 239-42.	1.1	44
125	Application of potential probiotic Lactobacillus fermentum AD1 strain in healthy dogs. Anaerobe, 2006, 12, 75-79.	1.0	52
126	Enterococcus faecium EK13—an enterocin A-producing strain with probiotic character and its effect in piglets. Anaerobe, 2006, 12, 242-248.	1.0	71

#	Article	IF	CITATIONS
127	Identification ofStaphylococcus piscifermentans from dog feces. Folia Microbiologica, 2005, 50, 524-528.	1.1	2
128	Effect of potential probiotic Enterococcus faecium strains on selected microflora in turkeys. Czech Journal of Animal Science, 2005, 50, 341-346.	0.5	5
129	Enterococci from rabbits - potential feed additive. Czech Journal of Animal Science, 2005, 50, 416-421.	0.5	21
130	Selection of enterococci for potential canine probiotic additives. Veterinary Microbiology, 2004, 100, 107-114.	0.8	69
131	Mode of Binding of Fibrinogen, Fibronectin and Iron-binding Proteins by Animal Enterococci. Veterinary Research Communications, 2004, 28, 587-598.	0.6	7
132	Adhesion Properties of Enterococci to Intestinal Mucus of Different Hosts. Veterinary Research Communications, 2004, 28, 647-655.	0.6	37
133	Lactobacilli and enterococci — Potential probiotics for dogs. Folia Microbiologica, 2004, 49, 203-207.	1.1	30
134	Inhibition of Salmonella enterica serovar Dusseldorf by enterocin A in gnotobiotic Japanese quails. Veterinarni Medicina, 2004, 49, 47-51.	0.2	22
135	Probiotic Properties of Enterococcus faecium EF9296 Strain Isolated from Silage. Acta Veterinaria Brno, 2004, 73, 513-519.	0.2	18
136	Reduction of Salmonella in gnotobiotic Japanese quails caused by the enterocin A-producing EK13 strain of Enterococcus faecium. Veterinary Research Communications, 2003, 27, 275-280.	0.6	39
137	Partial characterization of bacteriocins produced by environmental strain Enterococcus faecium EK13. Journal of Applied Microbiology, 2003, 94, 523-530.	1.4	73
138	Effect of Bacteriocin-like Substance Produced by Enterococcus faecium EF55 on the Composition of Avian Gastrointestinal Microflora. Acta Veterinaria Brno, 2003, 72, 559-564.	0.2	34
139	Inhibitory effect of different enterocins against fecal bacterial isolates. Berliner Und Munchener Tierarztliche Wochenschrift, 2003, 116, 37-40.	0.7	9
140	Selected microbial consortium of raw and digested pig slurry and its susceptibility to enterocins. World Journal of Microbiology and Biotechnology, 2002, 18, 11-15.	1.7	9
141	Effect of enterocin CCM 4231 onListeria monocytogenes in Saint-Paulin cheese. Folia Microbiologica, 2001, 46, 157-160.	1.1	46
142	Production of bacteriocins by different enterococcal isolates. Folia Microbiologica, 2001, 46, 49-52.	1.1	19
143	Antagonistic effect of enterocin CCM 4231 from Enterococcus faecium on "bryndzaâ€, a traditional Slovak dairy product from sheep milk. Microbiological Research, 2001, 156, 31-34.	2.5	35
144	Effect of Enterocins CCM4231 and V24 on the Cells of Environmental Isolates Acinetobacter spp Acta Veterinaria Brno, 2001, 70, 473-477.	0.2	3

#	Article	IF	CITATIONS
145	Treatment of sanitary-important bacteria by bacteriocin substance V24 in cattle dung water. Letters in Applied Microbiology, 2000, 30, 402-405.	1.0	18
146	In Vitro Treatment of Different Isolates from Cattle Dung and Pig Slurry by Nisin. Acta Veterinaria Brno, 2000, 69, 147-151.	0.2	7
147	The use of enterocin CCM 4231 in soy milk to control the growth of Listeria monocytogenes and Staphylococcus aureus. Journal of Applied Microbiology, 1999, 87, 182-182.	1.4	49
148	Inhibition ofListeria monocytogenesandStaphylococcus aureusby enterocin CCM 4231 in milk products. Food Microbiology, 1999, 16, 93-99.	2.1	44
149	Anti-staphylococcal effect of enterocin in Sunar® and yogurt. Folia Microbiologica, 1999, 44, 707-711.	1.1	26
150	Use of enterocin CCM 4231 to control Listeria monocytogenes in experimentally contaminated dry fermented Hornád salami. International Journal of Food Microbiology, 1999, 52, 115-119.	2.1	56
151	Vancomycin-resistant enterococci isolates from the rumen content of deer. Microbios, 1999, 97, 95-101.	0.3	5
152	Inhibition effect of enterocin CCM 4231 in the rumen fluid environment. Letters in Applied Microbiology, 1998, 26, 215-218.	1.0	24
153	Occurrence of bacteriocin production among environmental enterococci. Letters in Applied Microbiology, 1998, 27, 178-182.	1.0	51
154	Antimicrobial effect of enterocin CCM 4231 in the cattle slurry environment. Cytobios, 1998, 94, 73-9.	0.2	13
155	Production and characteristics of bacteriocins of rumen-associated enterococci. Reproduction, Nutrition, Development, 1997, 37, 32-33.	1.9	5
156	Distribution and characterization of Enterococcus species in municipal sewages. Microbios, 1997, 89, 73-80.	0.3	31
157	Inhibition of ruminal staphylococci and enterococci by nisin in vitro. Letters in Applied Microbiology, 1995, 20, 34-36.	1.0	13
158	Devitalization of bacterial and parasitic germs in sewage sludge during aerobic digestion under laboratory conditions. Veterinarni Medicina, 1995, 40, 157-62.	0.2	3
159	Survey of urease activity in ruminal bacteria isolated from domestic and wild ruminants. Microbios, 1995, 84, 7-11.	0.3	17
160	Indentification of Ruminal Enterococcal and Streptococcal Flora of Sheep. Journal of Applied Animal Research, 1994, 5, 63-71.	0.4	7
161	Antimicrobial susceptibility of ruminal coagulase-negative staphylococci. New Microbiologica, 1994, 17, 123-32.	0.1	2
162	Antimicrobial spectrum of bacteriocin-like substances produced by rumen staphylococci. Folia Microbiologica, 1993, 38, 74-76.	1.1	32

#	Article	IF	CITATIONS
163	Detection and antimicrobial spectrum of a bacteriocin-like substance produced by Enterococcus faecium CCM4231. Letters in Applied Microbiology, 1993, 16, 257-260.	1.0	100
164	Enterococci and staphylococci isolates from rumen of fallow deers and their antimicrobial activity. New Microbiologica, 1993, 16, 351-7.	0.1	2
165	Slovak raw goat milk as a source of variable, biofilmâ€forming staphylococci, and their susceptibility to lantibiotic bacteriocins. JSFA Reports, 0, , .	0.2	3