Hua Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/1155337/hua-zhang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 414
 92,976
 150
 300

 papers
 citations
 h-index
 g-index

 419
 101,208
 14
 8.54

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
414	The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. <i>Nature Chemistry</i> , 2013 , 5, 263-75	17.6	6689
413	Graphene-based composites. <i>Chemical Society Reviews</i> , 2012 , 41, 666-86	58.5	3116
412	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. <i>Chemical Reviews</i> , 2017 , 117, 6225-6331	68.1	2919
411	Single-layer MoS2 phototransistors. <i>ACS Nano</i> , 2012 , 6, 74-80	16.7	2704
410	Graphene-based materials: synthesis, characterization, properties, and applications. <i>Small</i> , 2011 , 7, 187	6 <u>19</u> 02	1968
409	Metal dichalcogenide nanosheets: preparation, properties and applications. <i>Chemical Society Reviews</i> , 2013 , 42, 1934-46	58.5	1595
408	Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. <i>Nano Letters</i> , 2012 , 12, 1538-44	11.5	1552
407	Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. <i>Nature Chemistry</i> , 2012 , 4, 310-6	17.6	1549
406	3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. <i>ACS Nano</i> , 2012 , 6, 3206-13	16.7	1371
405	Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11093-7	16.4	1349
404	Ultrathin Two-Dimensional Nanomaterials. ACS Nano, 2015, 9, 9451-69	16.7	1342
403	Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. <i>Small</i> , 2012 , 8, 63-7	11	1213
402	Two-dimensional transition metal dichalcogenide nanosheet-based composites. <i>Chemical Society Reviews</i> , 2015 , 44, 2713-31	58.5	1191
401	Preparation and applications of mechanically exfoliated single-layer and multilayer MoS[and WSe] nanosheets. <i>Accounts of Chemical Research</i> , 2014 , 47, 1067-75	24.3	1089
400	Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. <i>Small</i> , 2013 , 9, 140-7	11	1059
399	2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. <i>Advanced Materials</i> , 2016 , 28, 1917-33	24	977
398	Preparation of novel 3D graphene networks for supercapacitor applications. <i>Small</i> , 2011 , 7, 3163-8	11	925

(2014-2013)

397	Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. <i>Journal of the American Chemical Society</i> , 2013 , 135, 5998-6001	16.4	874
396	Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. <i>Energy and Environmental Science</i> , 2013 , 6, 2921	35.4	814
395	The evolution of dip-pen nanolithography. Angewandte Chemie - International Edition, 2004, 43, 30-45	16.4	802
394	Graphene-based electrodes. <i>Advanced Materials</i> , 2012 , 24, 5979-6004	24	756
393	Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. <i>Small</i> , 2012 , 8, 2994-9	11	725
392	Three-dimensional graphene materials: preparation, structures and application in supercapacitors. <i>Energy and Environmental Science</i> , 2014 , 7, 1850-1865	35.4	705
391	Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. <i>Chemical Society Reviews</i> , 2017 , 46, 2660-2677	58.5	697
390	Two-dimensional graphene analogues for biomedical applications. <i>Chemical Society Reviews</i> , 2015 , 44, 2681-701	58.5	687
389	Ultrathin 2D Metal-Organic Framework Nanosheets. <i>Advanced Materials</i> , 2015 , 27, 7372-8	24	684
388	Three-dimensional graphene foam supported FeDIIithium battery anodes with long cycle life and high rate capability. <i>Nano Letters</i> , 2013 , 13, 6136-43	11.5	670
387	Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. <i>Nature Communications</i> , 2013 , 4, 1444	17.4	658
386	In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 10842-10846	3.8	650
385	Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14071-14075	3.8	583
384	Graphene-based electronic sensors. <i>Chemical Science</i> , 2012 , 3, 1764	9.4	582
383	Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. <i>Small</i> , 2010 , 6, 307-12	11	579
382	Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation. <i>Small</i> , 2016 , 12, 2186-202	11	563
381	Graphene and graphene-based materials for energy storage applications. <i>Small</i> , 2014 , 10, 3480-98	11	546
380	Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance li-ion batteries and oxygen reduction reaction. <i>Advanced Materials</i> , 2014 , 26, 6186-92	24	532

379	Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. <i>ACS Nano</i> , 2010 , 4, 3201-8	16.7	529
378	One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1210-4	16.4	519
377	25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. <i>Advanced Materials</i> , 2014 , 26, 2185-204	24	514
376	Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. <i>ACS Nano</i> , 2010 , 4, 5263-8	16.7	514
375	Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. <i>Advanced Materials</i> , 2013 , 25, 5916-21	24	513
374	Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. <i>Small</i> , 2013 , 9, 3433-8	11	511
373	One-step synthesis of Ni3S2 nanorod@Ni(OH)2nanosheet corellhell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. <i>Energy and Environmental Science</i> , 2013 , 6, 2216-2221	35.4	503
372	Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. <i>Nano Letters</i> , 2013 , 13, 1007-15	11.5	502
371	Black phosphorus quantum dots. Angewandte Chemie - International Edition, 2015, 54, 3653-7	16.4	491
370	Synthesis of Two-Dimensional CoS1.097/Nitrogen-Doped Carbon Nanocomposites Using Metal-Organic Framework Nanosheets as Precursors for Supercapacitor Application. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6924-7	16.4	485
369	Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. <i>Nano Research</i> , 2010 , 3, 643-652	10	472
368	An effective method for the fabrication of few-layer-thick inorganic nanosheets. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9052-6	16.4	453
367	Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe[] TaS[] and TaSe[] Small, 2013 , 9, 1974-81	11	449
366	Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8816-38	16.4	447
365	Polymer pen lithography. Science, 2008, 321, 1658-60	33.3	441
364	Graphene-based electrochemical sensors. <i>Small</i> , 2013 , 9, 1160-72	11	434
363	Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. <i>Nature Communications</i> , 2015 , 6, 7873	17.4	425
362	Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. <i>Nano Letters</i> , 2015 , 15, 565-73	11.5	417

(2015-2012)

361	Seed-assisted synthesis of highly ordered TiO2@Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. <i>Energy and Environmental Science</i> , 2012 , 5, 6559	35.4	404
360	A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. <i>Advanced Materials</i> , 2014 , 26, 5794-800	24	400
359	A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations. <i>Nano Letters</i> , 2014 , 14, 1651-8	11.5	395
358	Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal-Organic Frameworks and TiCT Nanosheets for Electrocatalytic Oxygen Evolution. <i>ACS Nano</i> , 2017 , 11, 5800-5807	16.7	388
357	Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. <i>Energy and Environmental Science</i> , 2013 , 6, 987	35.4	384
356	Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 2011 , 21, 3422		378
355	Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. <i>ACS Nano</i> , 2015 , 9, 5198-207	16.7	375
354	Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion. <i>Advanced Materials</i> , 2016 , 28, 6167-96	24	372
353	Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. <i>Small</i> , 2014 , 10, 766-73	11	367
352	Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. <i>Energy and Environmental Science</i> , 2011 , 4, 4496	35.4	365
351	Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small, 2008 , 4, 1196-200	11	365
350	Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. <i>Science Advances</i> , 2015 , 1, e1500259	14.3	356
349	Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation. Small, 2016, 12, 272-	93	339
348	Preparation of MoSEpolyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. <i>Small</i> , 2012 , 8, 3517-22	11	337
347	A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. <i>Nature Communications</i> , 2012 , 3, 1177	17.4	334
346	Electrochemically reduced single-layer MoShanosheets: characterization, properties, and sensing applications. <i>Small</i> , 2012 , 8, 2264-70	11	333
345	Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. <i>Nanoscale</i> , 2011 , 3, 1084-9	7.7	330
344	Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. <i>Advanced Materials</i> , 2015 , 27, 4695-701	24	326

343	Graphene-Based Materials for Solar Cell Applications. <i>Advanced Energy Materials</i> , 2014 , 4, 1300574	21.8	325
342	Bioinspired Design of Ultrathin 2D Bimetallic Metal-Organic-Framework Nanosheets Used as Biomimetic Enzymes. <i>Advanced Materials</i> , 2016 , 28, 4149-55	24	320
341	All Metal Nitrides Solid-State Asymmetric Supercapacitors. <i>Advanced Materials</i> , 2015 , 27, 4566-71	24	313
340	Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4651-6	16.4	310
339	Three-Dimensional Architectures Constructed from Transition-Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 626-646	16.4	305
338	Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8698-8704	16.4	301
337	Amphiphilic graphene composites. Angewandte Chemie - International Edition, 2010, 49, 9426-9	16.4	301
336	Self-Assembly of Single-Layer CoAl-Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. <i>Advanced Materials</i> , 2016 , 28, 7640-5	24	296
335	Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. <i>ACS Nano</i> , 2013 , 7, 10344-53	16.7	295
334	Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. <i>Energy and Environmental Science</i> , 2014 , 7, 797-803	35.4	292
333	Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano, 2011, 5, 5038-44	16.7	284
332	Growth of Au Nanoparticles on 2D Metalloporphyrinic Metal-Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. <i>Advanced Materials</i> , 2017 , 29, 1700102	24	283
331	Two-Dimensional Metal Drganic Framework Nanosheets. Small Methods, 2017, 1, 1600030	12.8	283
330	MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. <i>Nanoscale</i> , 2014 , 6, 5624-9	7.7	281
329	Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5597-5601	13	278
328	Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA. <i>Advanced Materials</i> , 2015 , 27, 935-9	24	275
327	One-Pot Synthesis of Highly Anisotropic Five-Fold-Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. <i>Advanced Materials</i> , 2016 , 28, 8712-8717	24	275
326	Rationally Designed Hierarchical TiO2@Fe2O3 Hollow Nanostructures for Improved Lithium Ion Storage. <i>Advanced Energy Materials</i> , 2013 , 3, 737-743	21.8	274

325	Interfacing live cells with nanocarbon substrates. <i>Langmuir</i> , 2010 , 26, 2244-7	4	271
324	Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. <i>Chemical Society Reviews</i> , 2015 , 44, 2615-28	58.5	269
323	Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. <i>Chemical Society Reviews</i> , 2016 , 45, 63-82	58.5	268
322	3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 3129-33	9.5	264
321	Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. <i>Small</i> , 2010 , 6, 663-9	11	2 60
320	Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 1404-9	16.4	255
319	Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. <i>ACS Nano</i> , 2011 , 5, 1990-4	16.7	251
318	Optical identification of single- and few-layer MoSIsheets. <i>Small</i> , 2012 , 8, 682-6	11	249
317	Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. <i>Nano Letters</i> , 2014 , 14, 4852-8	11.5	242
316	Thermal desorption behavior and binding properties of DNA bases and nucleosides on gold. <i>Journal of the American Chemical Society</i> , 2002 , 124, 11248-9	16.4	239
315	Preparation of High-Percentage 1T-Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution. <i>Advanced Materials</i> , 2018 , 30, 1705509	24	234
314	Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. <i>Small</i> , 2014 , 10, 3537-43	11	234
313	Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8634		231
312	Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. <i>Chemical Science</i> , 2011 , 2, 1817	9.4	230
311	Synthesis and applications of graphene-based noble metal nanostructures. <i>Materials Today</i> , 2013 , 16, 29-36	21.8	226
310	Nanoporous walls on macroporous foam: rational design of electrodes to push areal pseudocapacitance. <i>Advanced Materials</i> , 2012 , 24, 4186-90	24	222
309	Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage. <i>Advanced Materials</i> , 2017 , 29, 1605361	24	221
308	Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 2670-2679	35.4	219

307	High-Performance Flexible Solid-State Ni/Fe Battery Consisting of Metal Oxides Coated Carbon Cloth/Carbon Nanofiber Electrodes. <i>Advanced Energy Materials</i> , 2016 , 6, 1601034	21.8	213
306	Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. <i>Chemical Society Reviews</i> , 2017 , 46, 6872-6904	58.5	210
305	Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. <i>Small</i> , 2010 , 6, 201-4	11	205
304	A Solution-Processed Hole Extraction Layer Made from Ultrathin MoS2 Nanosheets for Efficient Organic Solar Cells. <i>Advanced Energy Materials</i> , 2013 , 3, 1262-1268	21.8	203
303	Epitaxial growth of hybrid nanostructures. <i>Nature Reviews Materials</i> , 2018 , 3,	73.3	201
302	Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. <i>Journal of the American Chemical Society</i> , 2015 , 137, 12162-74	16.4	198
301	Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting. <i>ACS Nano</i> , 2016 , 10, 4496-503	16.7	197
300	Core-shell carbon materials derived from metal-organic frameworks as an efficient oxygen bifunctional electrocatalyst. <i>Nano Energy</i> , 2016 , 30, 368-378	17.1	196
299	Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. <i>ACS Nano</i> , 2010 , 4, 3987-92	16.7	195
298	Ultrathin Two-Dimensional Multinary Layered Metal Chalcogenide Nanomaterials. <i>Advanced Materials</i> , 2017 , 29, 1701392	24	190
297	Reduced graphene oxide-templated photochemical synthesis and in situ assembly of Au nanodots to orderly patterned Au nanodot chains. <i>Small</i> , 2010 , 6, 513-6	11	189
296	Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. <i>Energy and Environmental Science</i> , 2015 , 8, 1559-1568	35.4	188
295	High-Yield Exfoliation of Ultrathin Two-Dimensional Ternary Chalcogenide Nanosheets for Highly Sensitive and Selective Fluorescence DNA Sensors. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10430-6	16.4	187
294	Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices. <i>Advanced Materials</i> , 2013 , 25, 233-8	24	186
293	All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes. <i>Advanced Materials</i> , 2010 , 22, 3058-61	24	186
292	Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. <i>ACS Nano</i> , 2014 , 8, 5323-9	16.7	185
291	Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors. <i>Nanoscale Horizons</i> , 2017 , 2, 99-105	10.8	183
290	Cobalt Oxide Nanowall Arrays on Reduced Graphene Oxide Sheets with Controlled Phase, Grain Size, and Porosity for Li-Ion Battery Electrodes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8400-8406	3.8	181

(2015-2011)

289	Label-free, electrochemical detection of methicillin-resistant Staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 3881-6	11.8	180
288	Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. <i>Small</i> , 2013 , 9, 3314-9	11	179
287	Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. <i>Nano Letters</i> , 2013 , 13, 4562-8	11.5	177
286	Carbon microbelt aerogel prepared by waste paper: an efficient and recyclable sorbent for oils and organic solvents. <i>Small</i> , 2014 , 10, 3544-50	11	176
285	Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. <i>Applied Physics Letters</i> , 2013 , 102, 203109	3.4	175
284	A universal, rapid method for clean transfer of nanostructures onto various substrates. <i>ACS Nano</i> , 2014 , 8, 6563-70	16.7	170
283	Thin metal nanostructures: synthesis, properties and applications. <i>Chemical Science</i> , 2015 , 6, 95-111	9.4	169
282	Surface-Charge-Mediated Formation of H-TiO @Ni(OH) Heterostructures for High-Performance Supercapacitors. <i>Advanced Materials</i> , 2017 , 29, 1604164	24	169
281	Hollow coreShell nanostructure supercapacitor electrodes: gap matters. <i>Energy and Environmental Science</i> , 2012 , 5, 9085	35.4	169
280	Fabrication of graphene nanomesh by using an anodic aluminum oxide membrane as a template. <i>Advanced Materials</i> , 2012 , 24, 4138-42	24	169
279	Ultrathin Two-Dimensional Organic-Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4252-4255	16.4	165
278	Stabilization of 4H hexagonal phase in gold nanoribbons. <i>Nature Communications</i> , 2015 , 6, 7684	17.4	165
277	Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. <i>Nanoscale</i> , 2012 , 4, 293-7	7.7	164
276	Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano, 2011, 5, 2749-55	16.7	162
275	One-step growth of graphenellarbon nanotube hybrid materials by chemical vapor deposition. <i>Carbon</i> , 2011 , 49, 2944-2949	10.4	162
274	A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnSI nanoplates for high-performance lithium-ion batteries. <i>Nanoscale</i> , 2013 , 5, 1456-9	7.7	158
273	Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. <i>Nature Communications</i> , 2015 , 6, 6571	17.4	157
272	A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5425-8	16.4	156

271	Synthesis of Ultrathin PdCu Alloy Nanosheets Used as a Highly Efficient Electrocatalyst for Formic Acid Oxidation. <i>Advanced Materials</i> , 2017 , 29, 1700769	24	154
270	Few-Layer Graphdiyne Nanosheets Applied for Multiplexed Real-Time DNA Detection. <i>Advanced Materials</i> , 2017 , 29, 1606755	24	153
269	Nano-tungsten carbide decorated graphene as co-catalysts for enhanced hydrogen evolution on molybdenum disulfide. <i>Chemical Communications</i> , 2013 , 49, 4884-6	5.8	153
268	Fabrication of Sub-50-nm Solid-State Nanostructures on the Basis of Dip-Pen Nanolithography. <i>Nano Letters</i> , 2003 , 3, 43-45	11.5	153
267	Synthesis of 4H/fcc Noble Multimetallic Nanoribbons for Electrocatalytic Hydrogen Evolution Reaction. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1414-9	16.4	152
266	TiO2 nanotube @ SnO2 nanoflake core B ranch arrays for lithium-ion battery anode. <i>Nano Energy</i> , 2014 , 4, 105-112	17.1	151
265	Flexible carbon nanotube papers with improved thermoelectric properties. <i>Energy and Environmental Science</i> , 2012 , 5, 5364-5369	35.4	143
264	VO2 nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material. <i>Materials Horizons</i> , 2015 , 2, 237-244	14.4	142
263	Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. <i>Nature Chemistry</i> , 2016 , 8, 470-5	17.6	142
262	Electrochemical Deposition of Semiconductor Oxides on Reduced Graphene Oxide-Based Flexible, Transparent, and Conductive Electrodes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11816-11821	3.8	142
261	Coating two-dimensional nanomaterials with metal-organic frameworks. ACS Nano, 2014, 8, 8695-701	16.7	141
260	Multifunctional Architectures Constructing of PANI Nanoneedle Arrays on MoS2 Thin Nanosheets for High-Energy Supercapacitors. <i>Small</i> , 2015 , 11, 4123-9	11	141
259	Formation of monometallic Au and Pd and bimetallic Au P d nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol. <i>Journal of Catalysis</i> , 2012 , 289, 105-117	7.3	139
258	Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications. <i>Accounts of Chemical Research</i> , 2016 , 49, 2841-2850	24.3	139
257	Recent Advances in Sensing Applications of Two-Dimensional Transition Metal Dichalcogenide Nanosheets and Their Composites. <i>Advanced Functional Materials</i> , 2017 , 27, 1605817	15.6	137
256	Hydrophilic Nitrogen and Sulfur Co-doped Molybdenum Carbide Nanosheets for Electrochemical Hydrogen Evolution. <i>Small</i> , 2015 , 11, 6278-84	11	137
255	Carbon-Based Sorbents with Three-Dimensional Architectures for Water Remediation. <i>Small</i> , 2015 , 11, 3319-36	11	136
254	In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. <i>Nature Communications</i> , 2017 , 8, 15447	17.4	132

253	A graphene-conjugated oligomer hybrid probe for light-up sensing of lectin and Escherichia coli. <i>Advanced Materials</i> , 2011 , 23, 4386-91	24	132
252	Memory devices using a mixture of MoSland graphene oxide as the active layer. <i>Small</i> , 2013 , 9, 727-31	11	130
251	Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 24-36	7.8	130
250	Novel Metal@Carbon Spheres CoreBhell Arrays by Controlled Self-Assembly of Carbon Nanospheres: A Stable and Flexible Supercapacitor Electrode. <i>Advanced Energy Materials</i> , 2015 , 5, 1401	70 ⁵ 9 ⁸	129
249	3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors. <i>Small</i> , 2014 , 10, 2937-45	11	126
248	Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. <i>Nanoscale</i> , 2015 , 7, 7035-9	7.7	126
247	Controlled synthesis of carbon-coated cobalt sulfide nanostructures in oil phase with enhanced li storage performances. <i>ACS Applied Materials & District Materials & Materials & District Materials &</i>	9.5	125
246	Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst. <i>Nanoscale</i> , 2012 , 4, 2478-83	7.7	124
245	Graphene oxide-templated synthesis of ultrathin or tadpole-shaped au nanowires with alternating hcp and fcc domains. <i>Advanced Materials</i> , 2012 , 24, 979-83	24	123
244	Full solution-processed synthesis of all metal oxide-based tree-like heterostructures on fluorine-doped tin oxide for water splitting. <i>Advanced Materials</i> , 2012 , 24, 5374-8	24	123
243	Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 273-281	13	122
242	Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. <i>Chemical Communications</i> , 2010 , 46, 6974-6	5.8	118
241	Submonolayered Ru Deposited on Ultrathin Pd Nanosheets used for Enhanced Catalytic Applications. <i>Advanced Materials</i> , 2016 , 28, 10282-10286	24	117
240	CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors. <i>Energy and Environmental Science</i> , 2011 , 4, 5000	35.4	116
239	Improved Reversibility of Fe /Fe Redox Couple in Sodium Super Ion Conductor Type Na Fe (PO) for Sodium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1605694	24	115
238	Synthesis of two-dimensional transition-metal phosphates with highly ordered mesoporous structures for lithium-ion battery applications. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 935	52 ^{16.4}	113
237	Postchemistry of organic particles: when TTF microparticles meet TCNQ microstructures in aqueous solution. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6926-8	16.4	113
236	High-Yield Synthesis of Crystal-Phase-Heterostructured 4H/fcc Au@Pd Core-Shell Nanorods for Electrocatalytic Ethanol Oxidation. <i>Advanced Materials</i> , 2017 , 29, 1701331	24	112

235	Supramolecular Polymerization Promoted In Situ Fabrication of Nitrogen-Doped Porous Graphene Sheets as Anode Materials for Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1500559	21.8	112
234	Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23439		112
233	Synthesis, structure, and optoelectronic properties of a new twistacene 1,2,3,4,6,13-hexaphenyl-7:8,11:12-bisbenzo-pentacene. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8167		110
232	Crystal structure and phototransistor behavior of N-substituted heptacence. <i>ACS Applied Materials & Amp; Interfaces</i> , 2012 , 4, 1883-6	9.5	109
231	Gold Coating of Silver Nanoprisms. Advanced Functional Materials, 2012, 22, 849-854	15.6	108
230	Synthesis of gold square-like plates from ultrathin gold square sheets: the evolution of structure phase and shape. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 12245-8	16.4	107
229	Investigation of MoSIand graphene nanosheets by magnetic force microscopy. ACS Nano, 2013, 7, 2842-	9 16.7	105
228	Self-assembled chiral nanofibers from ultrathin low-dimensional nanomaterials. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1565-71	16.4	105
227	Forest of gold nanowires: a new type of nanocrystal growth. ACS Nano, 2013, 7, 2733-40	16.7	105
226	Preparation, characterization, and photoswitching/light-emitting behaviors of coronene nanowires. Journal of Materials Chemistry, 2011 , 21, 1423-1427		104
225	Multilayer stacked low-temperature-reduced graphene oxide films: preparation, characterization, and application in polymer memory devices. <i>Small</i> , 2010 , 6, 1536-42	11	104
224	A Robust Hybrid Zn-Battery with Ultralong Cycle Life. <i>Nano Letters</i> , 2017 , 17, 156-163	11.5	103
223	Synthesis, structure, and physical properties of 5,7,14,16-tetraphenyl-8:9,12:13-bisbenzo-hexatwistacene. <i>Chemistry - an Asian Journal</i> , 2012 , 7, 561-4	4.5	103
222	Copper-based ternary and quaternary semiconductor nanoplates: templated synthesis, characterization, and photoelectrochemical properties. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8929-33	16.4	102
221	Approaching a stable, green twisted heteroacene through "clean reaction" strategy. <i>Chemical Communications</i> , 2012 , 48, 5974-6	5.8	99
220	Three-dimensional graphene network composites for detection of hydrogen peroxide. <i>Small</i> , 2013 , 9, 1703-7	11	99
219	Length-dependent conductance of molecular wires and contact resistance in metal-molecule-metal junctions. <i>ChemPhysChem</i> , 2008 , 9, 1416-24	3.2	99
218	DNA-templated silver nanoclusters for multiplexed fluorescent DNA detection. <i>Small</i> , 2015 , 11, 1385-9	11	98

217	Preparation of Superhydrophilic and Underwater Superoleophobic Nanofiber-Based Meshes from Waste Glass for Multifunctional Oil/Water Separation. <i>Small</i> , 2017 , 13, 1700391	11	95
216	Butterfly-shaped conjugated oligoelectrolyte/graphene oxide integrated assay for light-up visual detection of heparin. <i>Analytical Chemistry</i> , 2011 , 83, 7849-55	7.8	95
215	Synthesis, characterization, and bipolar transporting behavior of a new twisted polycyclic aromatic hydrocarbon: 1Q4Qdiphenyl-naphtho-(2Q3Q1.2)-pyrene-6Qnitro-7Qmethyl carboxylate. <i>Chemistry - A European Journal</i> , 2010 , 16, 7422-6	4.8	95
214	Synthesis of ultrathin face-centered-cubic au@pt and au@pd core-shell nanoplates from hexagonal-close-packed au square sheets. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5672-6	16.4	94
213	The molecular basis of distinct aggregation pathways of islet amyloid polypeptide. <i>Journal of Biological Chemistry</i> , 2011 , 286, 6291-300	5.4	94
212	Ultrahigh Performance of Novel Capacitive Deionization Electrodes based on A Three-Dimensional Graphene Architecture with Nanopores. <i>Scientific Reports</i> , 2016 , 6, 18966	4.9	93
211	Two-dimensional CuSe nanosheets with microscale lateral size: synthesis and template-assisted phase transformation. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5083-7	16.4	93
2 10	Synthesis, characterization, and physical properties of a conjugated heteroacene: 2-methyl-1,4,6,7,8,9-hexaphenylbenz(g)isoquinolin-3(2H)-one (BIQ). <i>Chemistry - an Asian Journal</i> , 2011 , 6, 856-62	4.5	92
209	Aminosilane micropatterns on hydroxyl-terminated substrates: fabrication and applications. <i>Langmuir</i> , 2010 , 26, 5603-9	4	91
208	Preparation of Single-Layer MoS(2x)Se2(1-x) and Mo(x)W(1-x)S2 Nanosheets with High-Concentration Metallic 1T Phase. <i>Small</i> , 2016 , 12, 1866-74	11	91
207	Hierarchical TiO2 nanobelts@MnO2 ultrathin nanoflakes coreBhell array electrode materials for supercapacitors. <i>RSC Advances</i> , 2013 , 3, 14413	3.7	90
206	Edge Epitaxy of Two-Dimensional MoSe and MoS Nanosheets on One-Dimensional Nanowires. Journal of the American Chemical Society, 2017 , 139, 8653-8660	16.4	90
205	Self-branched EMnO2/EMnO2 heterojunction nanowires with enhanced pseudocapacitance. <i>Materials Horizons</i> , 2017 , 4, 415-422	14.4	89
204	Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N-C) as efficient oxygen catalysts for Zn-air batteries. <i>Nanoscale</i> , 2016 , 8, 5067-75	7.7	89
203	Revealing the Role of Interfacial Properties on Catalytic Behaviors by in Situ Surface-Enhanced Raman Spectroscopy. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10339-10346	16.4	89
202	Chemical reaction between Ag nanoparticles and TCNQ microparticles in aqueous solution. <i>Small</i> , 2011 , 7, 1242-6	11	89
201	DPN-Generated Nanostructures Made of Gold, Silver, and Palladium. <i>Chemistry of Materials</i> , 2004 , 16, 1480-1484	9.6	89
200	In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metal-Organic Framework Nanosheets. <i>Small</i> , 2016 , 12, 4669-74	11	88

199	Shape-Controlled Micro/Nanostructures of 9,10-Diphenylanthracene (DPA) and Their Application in Light-Emitting Devices. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 7924-7927	3.8	87
198	Synthesis, characterization, self-assembly, and physical properties of 11-methylbenzo[d]pyreno[4,5-b]furan. <i>Organic Letters</i> , 2011 , 13, 3004-7	6.2	87
197	A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. <i>Nanoscale</i> , 2015 , 7, 10162-9	7.7	85
196	CdS core-Au plasmonic satellites nanostructure enhanced photocatalytic hydrogen evolution reaction. <i>Nano Energy</i> , 2018 , 49, 363-371	17.1	85
195	Fabrication of polymer nanocavities with tailored openings. ACS Nano, 2009, 3, 3469-74	16.7	85
194	Synthesis, properties and applications of one- and two-dimensional gold nanostructures. <i>Nano Research</i> , 2015 , 8, 40-55	10	84
193	Conformally deposited NiO on a hierarchical carbon support for high-power and durable asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23283-23288	13	82
192	Controllable Synthesis of Atomically Thin Type-II Weyl Semimetal WTe Nanosheets: An Advanced Electrode Material for All-Solid-State Flexible Supercapacitors. <i>Advanced Materials</i> , 2017 , 29, 1701909	24	81
191	Modulating electronic transport properties of MoS2 field effect transistor by surface overlayers. <i>Applied Physics Letters</i> , 2013 , 103, 063109	3.4	80
190	Enhanced Lithium Storage Performance of CuO Nanowires by Coating of Graphene Quantum Dots. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1400499	4.6	80
189	Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1841-5	16.4	79
188	Co@Co3 O4 @PPD Core@bishell Nanoparticle-Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction. <i>Small</i> , 2016 , 12, 2580-7	11	79
187	Electrochemical deposition of Cl-doped n-type Cu2O on reduced graphene oxide electrodes. Journal of Materials Chemistry, 2011 , 21, 3467-3470		78
186	Biofunctionalized nanoarrays of inorganic structures prepared by dip-pen nanolithography. <i>Nanotechnology</i> , 2003 , 14, 1113-1117	3.4	78
185	Dip Pen Nanolithography (DPN): process and instrument performance with Nanolnk@ NSCRIPTOR system. <i>Ultramicroscopy</i> , 2005 , 103, 117-32	3.1	78
184	Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. <i>Nanoscale</i> , 2013 , 5, 6040-7	7.7	77
183	Recent Methods for the Synthesis of Noble-Metal-Free Hydrogen-Evolution Electrocatalysts: From Nanoscale to Sub-nanoscale. <i>Small Methods</i> , 2017 , 1, 1700118	12.8	76
182	Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity. <i>Nanoscale</i> , 2014 , 6, 12340-4	7.7	76

181	Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2Ee2O3/rGO composite nanostructures. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12770		76
180	Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor. <i>Scientific Reports</i> , 2012 , 2, 981	4.9	75
179	Nanocomposites of graphene oxide and upconversion rare-earth nanocrystals with superior optical limiting performance. <i>Small</i> , 2012 , 8, 2271-6	11	75
178	Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. <i>RSC Advances</i> , 2011 , 1, 117	3.7	75
177	Photochemically controlled synthesis of anisotropic Au nanostructures: platelet-like Au nanorods and six-star Au nanoparticles. <i>ACS Nano</i> , 2010 , 4, 6196-202	16.7	74
176	Chemoselective photodeoxidization of graphene oxide using sterically hindered amines as catalyst: synthesis and applications. <i>ACS Nano</i> , 2012 , 6, 3027-33	16.7	73
175	Hierarchically porous three-dimensional electrodes of CoMoOIand ZnCoIDIand their high anode performance for lithium ion batteries. <i>Nanoscale</i> , 2014 , 6, 10556-61	7.7	72
174	Synthesis of graphene-conjugated polymer nanocomposites for electronic device applications. <i>Nanoscale</i> , 2013 , 5, 1440-51	7.7	72
173	Fabrication of nanoelectrode ensembles by electrodepositon of Au nanoparticles on single-layer graphene oxide sheets. <i>Nanoscale</i> , 2012 , 4, 2728-33	7.7	72
172	Kinetically controlled assembly of a spirocyclic aromatic hydrocarbon into polyhedral micro/nanocrystals. <i>ACS Nano</i> , 2012 , 6, 5309-19	16.7	72
171	Graphene oxide as a novel nanoplatform for enhancement of aggregation-induced emission of silole fluorophores. <i>Advanced Materials</i> , 2012 , 24, 4191-5	24	72
170	Graphene oxide as a carbon source for controlled growth of carbon nanowires. <i>Small</i> , 2011 , 7, 1199-202	11	72
169	Sn Nanoparticles Encapsulated in 3D Nanoporous Carbon Derived from a Metal-Organic Framework for Anode Material in Lithium-Ion Batteries. <i>ACS Applied Materials & Design Company</i> , 17172-1717	19 ·5	70
168	Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence. <i>Advanced Materials</i> , 2014 , 26, 1735-9	24	70
167	Interfacial Interactions in van der Waals Heterostructures of MoS and Graphene. <i>ACS Nano</i> , 2017 , 11, 11714-11723	16.7	69
166	Thiazole derivative-modified upconversion nanoparticles for Hg(2+) detection in living cells. <i>Nanoscale</i> , 2016 , 8, 276-82	7.7	69
165	Patterning Colloidal Metal Nanoparticles for Controlled Growth of Carbon Nanotubes. <i>Advanced Materials</i> , 2008 , 20, 4873-4878	24	68
164	Chemically engineered graphene oxide as high performance cathode materials for Li-ion batteries. <i>Carbon</i> , 2014 , 76, 148-154	10.4	67

163	Scanning Probe Contact Printing. <i>Langmuir</i> , 2003 , 19, 8951-8955	4	67
162	Properties of Single Dendrimer Molecules Studied by Atomic Force Microscopy <i>Langmuir</i> , 2000 , 16, 9009-9014	4	67
161	Self-Assembly of Two-Dimensional Nanosheets into One-Dimensional Nanostructures. <i>CheM</i> , 2016 , 1, 59-77	16.2	67
160	A novel graphene-polysulfide anode material for high-performance lithium-ion batteries. <i>Scientific Reports</i> , 2013 , 3, 2341	4.9	66
159	Porous nitrogen doped carbon foam with excellent resilience for self-supported oxygen reduction catalyst. <i>Carbon</i> , 2015 , 95, 388-395	10.4	65
158	Facile fabrication of hierarchical ZnCo2O4/NiO core/shell nanowire arrays with improved lithium-ion battery performance. <i>Nanoscale</i> , 2014 , 6, 6563-8	7.7	64
157	Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons. <i>Chemical Science</i> , 2017 , 8, 795-799	9.4	64
156	Preparation of weavable, all-carbon fibers for non-volatile memory devices. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13351-5	16.4	64
155	Ternary Chalcogenide Nanosheets with Ultrahigh Photothermal Conversion Efficiency for Photoacoustic Theranostics. <i>Small</i> , 2017 , 13, 1604139	11	63
154	Preparation of MoS2-MoO3 hybrid nanomaterials for light-emitting diodes. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12560-5	16.4	62
153	Surfactant-free sub-2 nm ultrathin triangular gold nanoframes. Small, 2013, 9, 2880-6	11	62
152	Nanolithography of single-layer graphene oxide films by atomic force microscopy. <i>Langmuir</i> , 2010 , 26, 6164-6	4	62
151	Self-Assembly of Polyphenylene Dendrimers into Micrometer Long Nanofibers: An Atomic Force Microscopy Study. <i>Langmuir</i> , 2002 , 18, 2385-2391	4	62
150	AuAg nanosheets assembled from ultrathin AuAg nanowires. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1444-7	16.4	61
149	Binary-Phased Nanoparticles for Enhanced Thermoelectric Properties. <i>Advanced Materials</i> , 2009 , 21, 3196-3200	24	61
148	Preparation of Cobalt Sulfide Nanoparticle-Decorated Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide Aerogel Used as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. <i>Small</i> , 2016 , 12, 5920-5926	11	61
147	A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling in vivo. <i>Biomaterials</i> , 2015 , 54, 34-43	15.6	60
146	Gold-nanoparticle-embedded polydimethylsiloxane elastomers for highly sensitive Raman detection. <i>Small</i> , 2012 , 8, 1336-40	11	60

145	Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering. <i>Chemical Communications</i> , 2011 , 47, 8560-2	5.8	59
144	Atomic-layer-deposited iron oxide on arrays of metal/carbon spheres and their application for electrocatalysis. <i>Nano Energy</i> , 2016 , 20, 244-253	17.1	58
143	A universal method for preparation of noble metal nanoparticle-decorated transition metal dichalcogenide nanobelts. <i>Advanced Materials</i> , 2014 , 26, 6250-4	24	58
142	Dip Pen Nanolithography Stamp Tip. <i>Nano Letters</i> , 2004 , 4, 1649-1655	11.5	58
141	Oriented molecular attachments through sol-gel chemistry for synthesis of ultrathin hydrated vanadium pentoxide nanosheets and their applications. <i>Small</i> , 2013 , 9, 716-21	11	57
140	Facile synthesis of gold nanomaterials with unusual crystal structures. <i>Nature Protocols</i> , 2017 , 12, 2367	-21378	56
139	Mechanism studies on the superior optical limiting observed in graphene oxide covalently functionalized with upconversion NaYF□Yb□+/Er□+ nanoparticles. <i>Small</i> , 2012 , 8, 2163-8	11	56
138	Triple-layer (au@perylene)@polyaniline nanocomposite: unconventional growth of faceted organic nanocrystals on polycrystalline Au. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9898-902	16.4	55
137	Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12576-80	16.4	54
136	High-throughput dip-pen-nanolithography-based fabrication of Si nanostructures. <i>Small</i> , 2007 , 3, 81-5	11	54
135	Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes. <i>Nano Letters</i> , 2017 , 17, 5726-5733	11.5	53
134	Fabrication of CoreBhell Structure of [email[protected] (M=Se, Au, Ag2Se) and Transformation to YolkBhell Structure by Electron Beam Irradiation or Vacuum Annealing. <i>Chemistry of Materials</i> , 2009 , 21, 3848-3852	9.6	53
133	Nanopaper based on Ag/TiO2 nanobelts heterostructure for continuous-flow photocatalytic treatment of liquid and gas phase pollutants. <i>Journal of Hazardous Materials</i> , 2011 , 197, 19-25	12.8	52
132	Free-standing bimetallic nanorings and nanoring arrays made by on-wire lithography. <i>ACS Nano</i> , 2010 , 4, 7676-82	16.7	52
131	Controlled assembly of gold nanoparticles and graphene oxide sheets on dip pen nanolithography-generated templates. <i>Langmuir</i> , 2009 , 25, 10455-8	4	52
130	An on-nanoparticle rolling-circle amplification platform for ultrasensitive protein detection in biological fluids. <i>Small</i> , 2010 , 6, 2520-5	11	52
129	Synthesis of Open-Ended, Cylindrical AuAg Alloy Nanostructures on a Si/SiOx Surface. <i>Nano Letters</i> , 2004 , 4, 1493-1495	11.5	52
128	Highly Sensitive and Selective Aptamer-Based Fluorescence Detection of a Malarial Biomarker Using Single-Layer MoS2 Nanosheets. <i>ACS Sensors</i> , 2016 , 1, 1315-1321	9.2	52

127	Template-free pseudomorphic synthesis of tungsten carbide nanorods. <i>Small</i> , 2012 , 8, 3350-6	11	51
126	Bottom-up preparation of porous metal-oxide ultrathin sheets with adjustable composition/phases and their applications. <i>Small</i> , 2011 , 7, 3458-64	11	51
125	Preparation of Ultrathin Two-Dimensional Ti Ta S O Nanosheets as Highly Efficient Photothermal Agents. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7842-7846	16.4	50
124	Ordered Porous Pd Octahedra Covered with Monolayer Ru Atoms. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14566-9	16.4	50
123	Graphene oxide scrolls on hydrophobic substrates fabricated by molecular combing and their application in gas sensing. <i>Small</i> , 2013 , 9, 382-6	11	50
122	Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. <i>Nanoscale</i> , 2017 , 9, 5102-5109	7.7	49
121	Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction. <i>Nanoscale</i> , 2015 , 7, 9394-8	7.7	48
120	A Method for Fabrication of Graphene Oxide Nanoribbons from Graphene Oxide Wrinkles. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 19119-19122	3.8	48
119	Binder Free Hierarchical Mesoporous Carbon Foam for High Performance Lithium Ion Battery. <i>Scientific Reports</i> , 2017 , 7, 1440	4.9	47
118	Transformable masks for colloidal nanosynthesis. <i>Nature Communications</i> , 2018 , 9, 563	17.4	47
117	Recent Progress in the Preparation, Assembly, Transformation, and Applications of Layer-Structured Nanodisks beyond Graphene. <i>Advanced Materials</i> , 2017 , 29, 1701704	24	47
116	Demonstration of High-Resolution Capability of Chemical Force Titration via Study of Acid/Base Properties of a Patterned Self-Assembled Monolayer. <i>Langmuir</i> , 2000 , 16, 517-521	4	47
115	Intrinsically Conductive Perovskite Oxides with Enhanced Stability and Electrocatalytic Activity for Oxygen Reduction Reactions. <i>ACS Catalysis</i> , 2016 , 6, 7865-7871	13.1	46
114	Electrochemical deposition of Pt nanoparticles on carbon nanotube patterns for glucose detection. <i>Analyst, The</i> , 2010 , 135, 1726-30	5	44
113	Synthesis of 4H/fcc-Au@M (M = Ir, Os, IrOs) Core-Shell Nanoribbons For Electrocatalytic Oxygen Evolution Reaction. <i>Small</i> , 2016 , 12, 3908-13	11	44
112	Piezoelectricity in two-dimensional materials. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4432	2 -1 6.4	43
111	Free-standing one-dimensional plasmonic nanostructures. <i>Nanoscale</i> , 2012 , 4, 66-75	7.7	43
	Anodized Aluminum Oxide Templated Synthesis of Metal-Organic Frameworks Used as Membrane	16.4	42

(2013-2016)

109	Surface Rutilization of Anatase TiO2 Nanorods for Creation of Synergistically Bridging and Fencing Electron Highways. <i>Advanced Functional Materials</i> , 2016 , 26, 456-465	15.6	42	
108	Organic-Dye-Modified Upconversion Nanoparticle as a Multichannel Probe To Detect Cu in Living Cells. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 1028-1032	9.5	41	
107	Preparation and applications of novel composites composed of metal-organic frameworks and two-dimensional materials. <i>Chemical Communications</i> , 2016 , 52, 1555-62	5.8	41	
106	Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 15973-15979	3.8	40	
105	Integrating carbon nanotubes and lipid bilayer for biosensing. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1834-7	11.8	39	
104	Controlled growth of peptide nanoarrays on Si/SiOx substrates. <i>Small</i> , 2008 , 4, 1324-8	11	38	
103	Molecular-Level Design of Hierarchically Porous Carbons Codoped with Nitrogen and Phosphorus Capable of In Situ Self-Activation for Sustainable Energy Systems. <i>Small</i> , 2017 , 13, 1602010	11	37	
102	High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. <i>Nanoscale</i> , 2012 , 4, 860-3	7.7	37	
101	Solution-processed nanocrystalline TiO2 buffer layer used for improving the performance of organic photovoltaics. <i>ACS Applied Materials & District Materials & Materials & District Materials & Distr</i>	9.5	37	
100	Construction of ultrafine and stable PtFe nano-alloy with ultra-low Pt loading for complete removal of CO in PROX at room temperature. <i>Applied Catalysis B: Environmental</i> , 2016 , 180, 237-245	21.8	36	
99	Surface modification of smooth poly(L-lactic acid) films for gelatin immobilization. <i>ACS Applied Materials & ACS Applied & ACS Ap</i>	9.5	36	
98	Preparation, characterization, physical properties, and photoconducting behaviour of anthracene derivative nanowires. <i>Nanoscale</i> , 2011 , 3, 4720-3	7.7	36	
97	Force titration of amino group-terminated self-assembled monolayers of 4-aminothiophenol on gold using chemical force microscopy. <i>Thin Solid Films</i> , 1998 , 327-329, 778-780	2.2	36	
96	A pyrazolate-bridged cyclic tetranuclear copper(II) complex: synthesis, crystal structure and magnetic properties. <i>Journal of the Chemical Society Dalton Transactions</i> , 1996 , 3799		36	
95	Synthesis of 4H/fcc-Au@Metal Sulfide Core-Shell Nanoribbons. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10910-3	16.4	35	
94	Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction. <i>Nanoscale</i> , 2014 , 6, 11738-43	7.7	35	
93	Weavable, High-Performance, Solid-State Supercapacitors Based on Hybrid Fibers Made of Sandwiched Structure of MWCNT/rGO/MWCNT. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600102	6.4	35	
92	Preservation of lattice orientation in coalescing imperfectly aligned gold nanowires by a zipper mechanism. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6019-23	16.4	34	

91	Assembly of Graphene Oxide and Au0.7Ag0.3 Alloy Nanoparticles on SiO2: A New Raman Substrate with Ultrahigh Signal-to-Background Ratio. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 24080-24084	3.8	34
90	Dialdehyde Cellulose as a Bio-Based Robust Adhesive for Wood Bonding. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 10452-10459	8.3	33
89	Controlled growth of single-walled carbon nanotubes on patterned substrates. <i>Chemical Society Reviews</i> , 2011 , 40, 5221-31	58.5	33
88	Crucial role for oxygen functional groups in the oxygen reduction reaction electrocatalytic activity of nitrogen-doped carbons. <i>Electrochimica Acta</i> , 2018 , 292, 942-950	6.7	33
87	Highly Efficient Zn-Cu-In-Se Quantum Dot-Sensitized Solar Cells through Surface Capping with Ascorbic Acid. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2019 , 11, 6927-6936	9.5	32
86	Hybrid Flexible Resistive Random Access Memory-Gated Transistor for Novel Nonvolatile Data Storage. <i>Small</i> , 2016 , 12, 390-6	11	32
85	Hierarchical protonated titanate nanostructures for lithium-ion batteries. <i>Nanoscale</i> , 2011 , 3, 4074-7	7.7	32
84	Nanohybridization of ferrocene clusters and reduced graphene oxides with enhanced lithium storage capability. <i>Chemical Communications</i> , 2011 , 47, 10383-5	5.8	31
83	Polyphenylene Dendrimer-Templated In Situ Construction of Inorganic Drganic Hybrid Rice-Shaped Architectures. <i>Advanced Functional Materials</i> , 2010 , 20, 43-49	15.6	31
82	Synthesis of porous amorphous FePO4 nanotubes and their lithium storage properties. <i>Chemistry - A European Journal</i> , 2013 , 19, 1568-72	4.8	30
81	Synthesis and structure of two-dimensional transition-metal dichalcogenides. <i>MRS Bulletin</i> , 2015 , 40, 566-576	3.2	30
80	Theoretical Investigation on the Thermal Stability of Hollow Gold Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20193-20197	3.8	30
79	Surface-Enhanced Raman Scattering of AgAu Nanodisk Heterodimers. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 10390-10395	3.8	28
78	Discrimination of Dendrimer Aggregates on Mica Based on Adhesion Force: ☐A Pulsed Force Mode Atomic Force Microscopy Study. <i>Langmuir</i> , 2000 , 16, 9294-9298	4	28
77	Two-dimensional molybdenum disulphide nanosheet-covered metal nanoparticle array as a floating gate in multi-functional flash memories. <i>Nanoscale</i> , 2015 , 7, 17496-503	7.7	27
76	Combat biofouling with microscopic ridge-like surface morphology: a bioinspired study. <i>Journal of the Royal Society Interface</i> , 2018 , 15,	4.1	27
75	Redox-crosslinked graphene networks with enhanced electrochemical capacitance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12924	13	26
74	Nitrogen-doped carbon paper with 3D porous structure as a flexible free-standing anode for lithium-ion batteries. <i>Scientific Reports</i> , 2017 , 7, 7769	4.9	26

(2012-2012)

73	A carbon monoxide gas sensor using oxygen plasma modified carbon nanotubes. <i>Nanotechnology</i> , 2012 , 23, 425502	3.4	26
72	Investigation of Thermally Induced Cellular Ablation and Heat Response Triggered by Planar MoS-Based Nanocomposite. <i>Bioconjugate Chemistry</i> , 2017 , 28, 1059-1067	6.3	25
71	Single-Layer Ternary Chalcogenide Nanosheet as a Fluorescence-Based "Capture-Release" Biomolecular Nanosensor. <i>Small</i> , 2017 , 13, 1601925	11	24
70	Electrochemically "writing" graphene from graphene oxide. <i>Small</i> , 2014 , 10, 3555-9	11	24
69	Nanoscale-controlled enzymatic degradation of poly(L-lactic acid) films using dip-pen nanolithography. <i>Small</i> , 2011 , 7, 226-9	11	24
68	Hollow carbon nanosphere embedded with ultrafine Fe3O4 nanoparticles as high performance Li-ion battery anode. <i>Electrochimica Acta</i> , 2016 , 219, 356-362	6.7	24
67	Nitrogen and phosphorus co-doped carbon modified activated carbon as an efficient oxygen reduction catalyst for microbial fuel cells <i>RSC Advances</i> , 2018 , 8, 848-855	3.7	23
66	Preparation of graphene-MoS2 hybrid aerogels as multifunctional sorbents for water remediation. <i>Science China Materials</i> , 2017 , 60, 1102-1108	7.1	23
65	One-pot encapsulation of luminescent quantum dots synthesized in aqueous solution by amphiphilic polymers. <i>Small</i> , 2011 , 7, 1456-63	11	23
64	Recyclable hydrophilic-hydrophobic micropatterns on glass for microarray applications. <i>Langmuir</i> , 2007 , 23, 4728-31	4	23
63	A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods. <i>Nano Energy</i> , 2016 , 26, 1-6	17.1	23
62	Enhancing the sensing specificity of a MoS nanosheet-based FRET aptasensor using a surface blocking strategy. <i>Analyst, The</i> , 2017 , 142, 2570-2577	5	22
61	Synthesis of porous, hollow metal MCO(3) (M=Mn, Co, Ca) microstructures and adsorption properties thereof. <i>Chemistry - A European Journal</i> , 2014 , 20, 421-5	4.8	22
60	Amplified detection of femtomolar DNA based on a one-to-few recognition reaction between DNA-Au conjugate and target DNA. <i>Nanoscale</i> , 2014 , 6, 3110-5	7.7	22
59	Enhanced Optical Nonlinearity in Noncovalently Functionalized Amphiphilic Graphene Composites. <i>ChemPlusChem</i> , 2012 , 77, 688-693	2.8	22
58	Gold nanotip array for ultrasensitive electrochemical sensing and spectroscopic monitoring. <i>Small</i> , 2013 , 9, 2260-5	11	22
57	In Situ Modification of Three-Dimensional Polyphenylene Dendrimer-Templated CuO Rice-Shaped Architectures with Electron Beam Irradiation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13465-13470	3.8	22
56	Induced coiling action: exploring the intrinsic defects in five-fold twinned silver nanowires. <i>ACS Nano</i> , 2012 , 6, 6033-9	16.7	21

55	Synthesis of WO -WX (n=2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Light-Emitting Diodes. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10486-10490	16.4	20
54	Specific functionalization of CTAB stabilized anisotropic gold nanoparticles with polypeptides for folding-mediated self-assembly. <i>Journal of Materials Chemistry</i> , 2012 , 22, 20368		20
53	Facile "needle-scratching" method for fast catalyst patterns used for large-scale growth of densely aligned single-walled carbon-nanotube arrays. <i>Small</i> , 2009 , 5, 2061-5	11	20
52	Phosphine-free, low-temperature synthesis of tetrapod-shaped CdS and its hybrid with Au nanoparticles. <i>Small</i> , 2014 , 10, 4727-34	11	19
51	Rational synthesis of triangular Au-Ag(2)S hybrid nanoframes with effective photoresponses. <i>Chemistry - A European Journal</i> , 2014 , 20, 2742-5	4.8	19
50	Postchemistry of organic microrods: thermopolymerization in aqueous solution. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 801-3	4.5	19
49	Dip-Pen Nanolithography-Generated Patterns Used as Gold Etch Resists: A Comparison Study of 16-Mercaptohexadecanioc Acid and 1-Octadecanethiol. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 4184	-4187	19
48	Asymmetric electron transport realized by decoupling between molecule and electrode. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 10323-30	3.6	19
47	Probing Carboxylic Acid Groups in Replaced and Mixed Self-Assembled Monolayers by Individual Ionized Dendrimer Molecules: An Atomic Force Microscopy Study. <i>Langmuir</i> , 2002 , 18, 1801-1810	4	19
46	Synthesis of high-quality lanthanide oxybromides nanocrystals with single-source precursor for promising applications in cancer cells imaging. <i>Applied Materials Today</i> , 2015 , 1, 20-26	6.6	18
45	Encapsulation of nanoscale metal oxides into an ultra-thin Ni matrix for superior Li-ion batteries: a versatile strategy. <i>Nanoscale</i> , 2014 , 6, 12990-3000	7.7	18
44	Graphene oxide architectures prepared by molecular combing on hydrophilic-hydrophobic micropatterns. <i>Small</i> , 2014 , 10, 2239-44	11	18
43	Plasmon enhanced quantum dots fluorescence and energy conversion in water splitting using shell-isolated nanoparticles. <i>Nano Energy</i> , 2017 , 42, 232-240	17.1	17
42	Periodic AuAg-AgB heterostructured nanowires. <i>Small</i> , 2014 , 10, 479-82	11	17
41	On-Chip Integration of a Covalent Organic Framework-Based Catalyst into a Miniaturized ZnAir Battery with High Energy Density. <i>ACS Energy Letters</i> , 2021 , 6, 2491-2498	20.1	17
40	Adhesion, proliferation, and gene expression profile of human umbilical vein endothelial cells cultured on bilayered polyelectrolyte coatings composed of glycosaminoglycans. <i>Biointerphases</i> , 2010 , 5, FA53-62	1.8	16
39	Enhancing Loading Amount and Performance of Quantum-Dot-Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots from Bicomponent Solvents. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 229-237	6.4	16
38	Interfacial Synthesis of Cellulose-Derived Solvent-Responsive Nanoparticles via Schiff Base Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 16595-16603	8.3	15

(2010-2012)

37	OWL-based nanomasks for preparing graphene ribbons with sub-10 nm gaps. <i>Nano Letters</i> , 2012 , 12, 4734-7	11.5	15
36	Single-layer graphene oxide sheet: a novel substrate for dip-pen nanolithography. <i>Chemical Communications</i> , 2011 , 47, 10070-2	5.8	15
35	Immobilization of recombinant vault nanoparticles on solid substrates. ACS Nano, 2010, 4, 1417-24	16.7	15
34	Mesoscopic organic nanosheets peeled from stacked 2D covalent frameworks. <i>Chemical Communications</i> , 2011 , 47, 7365-7	5.8	15
33	Semiconductor Nanocomposites of Emissive Flexible Random Copolymers and CdTe Nanocrystals: Preparation, Characterization, and Optoelectronic Properties. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 2007-2017	2.6	15
32	Atomic Force Microscopy Evidence of Citrate Displacement by 4-Mercaptopyridine on Gold in Aqueous Solution <i>Langmuir</i> , 2000 , 16, 4554-4557	4	15
31	Solvothermal-induced conversion of one-dimensional multilayer nanotubes to two-dimensional hydrophilic VOx nanosheets: synthesis and water treatment application. <i>ACS Applied Materials & Materials (ACS Applied Materials Samp; Interfaces</i> , 2013 , 5, 10389-94	9.5	14
30	Vapor-liquid-solid growth of endotaxial semiconductor nanowires. <i>Nano Letters</i> , 2012 , 12, 5565-70	11.5	14
29	Robust, Easy-Cleaning Superhydrophobic/Superoleophilic Copper Meshes for Oil/Water Separation under Harsh Conditions. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900158	4.6	12
28	Improving rate capacity and cycling stability of Si-anode lithium ion battery by using copper nanowire as conductive additive. <i>Journal of Alloys and Compounds</i> , 2020 , 822, 153664	5.7	12
27	High-Internal-Phase Pickering Emulsions Stabilized by Polymeric Dialdehyde Cellulose-Based Nanoparticles. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 7371-7379	8.3	12
26	TaS2 nanosheet-based room-temperature dosage meter for nitric oxide. APL Materials, 2014 , 2, 092506	5-7	12
25	Scalable solid-template reduction for designed reduced graphene oxide architectures. <i>ACS Applied Materials & District Action Science</i> , 2013 , 5, 7676-81	9.5	12
24	Graphene Oxide Scroll Meshes Prepared by Molecular Combing for Transparent and Flexible Electrodes. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600231	6.8	11
23	Zn-Ag-In-S quantum dot sensitized solar cells with enhanced efficiency by tuning defects. <i>Journal of Colloid and Interface Science</i> , 2019 , 547, 267-274	9.3	11
22	Efficient Flexible Counter Electrode Based on Modified Graphite Paper and in Situ Grown Copper Sulfide for Quantum Dot Sensitized Solar Cells. <i>ACS Applied Energy Materials</i> , 2018 , 1, 1355-1363	6.1	11
21	Molecular crystals on two-dimensional van der Waals substrates. <i>Science China Materials</i> , 2015 , 58, 5-8	7.1	11
20	Generation of dual patterns of metal oxide nanomaterials based on seed-mediated selective growth. <i>Langmuir</i> , 2010 , 26, 4616-9	4	11

19	Covalent Organic Frameworks for Efficient Energy Electrocatalysis: Rational Design and Progress. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2000090	1.6	11
18	Battery-Everywhere Design Based on a Cathodeless Configuration with High Sustainability and Energy Density. ACS Energy Letters, 2021, 6, 1859-1868	20.1	11
17	Facile growth of a single-crystal pattern: a case study of HKUST-1. <i>Chemical Communications</i> , 2012 , 48, 11901-3	5.8	10
16	Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis. <i>Integrative Biology (United Kingdom)</i> , 2010 , 2, 250-7	3.7	10
15	Levelling the playing field: screening for synergistic effects in coalesced bimetallic nanoparticles. <i>Nanoscale</i> , 2016 , 8, 3447-53	7.7	9
14	Synthesis, Structure, Physical Properties, and Displacement Current Measurement of an n-Type Organic Semiconductor: 2:3,5:6-Bis(1,1-dicyanoethylene-2,2-dithiolate)-quinone. <i>Australian Journal of Chemistry</i> , 2012 , 65, 1674	1.2	9
13	Surface-induced synthesis and self-assembly of metal suprastructures. Small, 2010, 6, 2708-15	11	9
12	Substrate-bound growth of Au-Pd diblock nanowire and hybrid nanorod-plate. <i>Nanoscale</i> , 2015 , 7, 8115	5-72.17	8
11	Encapsulation of a living bioelectrode by a hydrogel for bioelectrochemical systems in alkaline media. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 4641-4646	7.3	8
10	Facile "scratching" method with common metal objects to generate large-scale catalyst patterns used for growth of single-walled carbon nanotubes. <i>ACS Applied Materials & Discreta (1988)</i> , 1, 18	73: 5	8
9	Pulsed-Force-Mode AFM Studies of Polyphenylene Dendrimers on Self-Assembled Monolayers. Journal of Physical Chemistry C, 2007 , 111, 8142-8144	3.8	8
8	Two-dimensional synthetic templates. <i>National Science Review</i> , 2015 , 2, 19-21	10.8	6
7	Spirals and helices by asymmetric active surface growth. <i>Nanoscale</i> , 2017 , 9, 18352-18358	7.7	4
6	A rectifying diode with hysteresis effect from an electroactive hybrid of carbazole-functionalized polystyrene with CdTe nanocrystals via electrostatic interaction. <i>Science China Chemistry</i> , 2010 , 53, 232	4 ⁷ 2 ³ 328	3 4
5	Microstructure array on Si and SiOx generated by micro-contact printing, wet chemical etching and reactive ion etching. <i>Applied Surface Science</i> , 2006 , 253, 1960-1963	6.7	4
4	The 6-(10-Mercaptodecoxyl)quinoline Self-Assembled Monolayer on Gold: Spectroscopy and Wettability Investigation. <i>Journal of Colloid and Interface Science</i> , 1999 , 214, 46-52	9.3	4
3	Preparation and Applications of Two-Dimensional Crystals Based on Organic or Metal-Organic Materials. <i>Acta Chimica Sinica</i> , 2015 , 73, 913	3.3	4
2	Self-Assembly of Surface-Acylated Cellulose Nanowhiskers and Graphene Oxide for Multiresponsive Janus-Like Films with Time-Dependent Dry-State Structures. <i>Small</i> , 2020 , 16, e2004922	2 ¹¹	4

CADMIUM TELLURIDE NANOCRYSTALS: SYNTHESIS, GROWTH MODE AND EFFECT OF REACTION TEMPERATURE ON CRYSTAL STRUCTURES. *Nano*, **2008**, 03, 109-115

1.1 1