
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1155337/publications.pdf Version: 2024-02-01

ΗΠΑ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5, 263-275.	13.6	8,051
2	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	47.7	3,940
3	Graphene-based composites. Chemical Society Reviews, 2012, 41, 666-686.	38.1	3,513
4	Single-Layer MoS ₂ Phototransistors. ACS Nano, 2012, 6, 74-80.	14.6	3,103
5	Grapheneâ€Based Materials: Synthesis, Characterization, Properties, and Applications. Small, 2011, 7, 1876-1902.	10.0	2,239
6	Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature Chemistry, 2012, 4, 310-316.	13.6	1,857
7	Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews, 2013, 42, 1934.	38.1	1,809
8	Growth of Large-Area and Highly Crystalline MoS ₂ Thin Layers on Insulating Substrates. Nano Letters, 2012, 12, 1538-1544.	9.1	1,749
9	Ultrathin Two-Dimensional Nanomaterials. ACS Nano, 2015, 9, 9451-9469.	14.6	1,726
10	Single‣ayer Semiconducting Nanosheets: Highâ€Yield Preparation and Device Fabrication. Angewandte Chemie - International Edition, 2011, 50, 11093-11097.	13.8	1,517
11	3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano, 2012, 6, 3206-3213.	14.6	1,510
12	Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chemical Society Reviews, 2015, 44, 2713-2731.	38.1	1,405
13	Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS ₂ and WSe ₂ Nanosheets. Accounts of Chemical Research, 2014, 47, 1067-1075.	15.6	1,374
14	Fabrication of Single―and Multilayer MoS ₂ Filmâ€Based Fieldâ€Effect Transistors for Sensing NO at Room Temperature. Small, 2012, 8, 63-67.	10.0	1,346
15	2D Transitionâ€Metalâ€Dichalcogenideâ€Nanosheetâ€Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Advanced Materials, 2016, 28, 1917-1933.	21.0	1,214
16	Synthesis of Few‣ayer MoS ₂ Nanosheet oated TiO ₂ Nanobelt Heterostructures for Enhanced Photocatalytic Activities. Small, 2013, 9, 140-147.	10.0	1,166
17	Single-Layer MoS ₂ -Based Nanoprobes for Homogeneous Detection of Biomolecules. Journal of the American Chemical Society, 2013, 135, 5998-6001.	13.7	995
18	Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small, 2011, 7, 3163-3168.	10.0	980

#	Article	IF	CITATIONS
19	Ultrathin 2D Metal–Organic Framework Nanosheets. Advanced Materials, 2015, 27, 7372-7378.	21.0	943
20	Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy and Environmental Science, 2013, 6, 2921.	30.8	939
21	The Evolution of Dipâ€Pen Nanolithography. Angewandte Chemie - International Edition, 2004, 43, 30-45.	13.8	877
22	Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chemical Society Reviews, 2017, 46, 2660-2677.	38.1	866
23	Grapheneâ€Based Electrodes. Advanced Materials, 2012, 24, 5979-6004.	21.0	829
24	Fabrication of Flexible MoS ₂ Thinâ€Film Transistor Arrays for Practical Gasâ€Sensing Applications. Small, 2012, 8, 2994-2999.	10.0	817
25	Two-dimensional graphene analogues for biomedical applications. Chemical Society Reviews, 2015, 44, 2681-2701.	38.1	786
26	Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy and Environmental Science, 2014, 7, 1850-1865.	30.8	773
27	Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nature Communications, 2013, 4, 1444.	12.8	756
28	Three-Dimensional Graphene Foam Supported Fe ₃ O ₄ Lithium Battery Anodes with Long Cycle Life and High Rate Capability. Nano Letters, 2013, 13, 6136-6143.	9.1	738
29	Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation. Small, 2016, 12, 2186-2202.	10.0	719
30	In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces. Journal of Physical Chemistry C, 2009, 113, 10842-10846.	3.1	702
31	Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chemical Society Reviews, 2015, 44, 2584-2586.	38.1	699
32	Graphene-based electronic sensors. Chemical Science, 2012, 3, 1764.	7.4	663
33	Graphene and Grapheneâ€Based Materials for Energy Storage Applications. Small, 2014, 10, 3480-3498.	10.0	653
34	Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. Journal of Physical Chemistry C, 2009, 113, 14071-14075.	3.1	636
35	Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small, 2010, 6, 307-312.	10.0	626
36	Carbon Fiber Aerogel Made from Raw Cotton: A Novel, Efficient and Recyclable Sorbent for Oils and Organic Solvents. Advanced Materials, 2013, 25, 5916-5921.	21.0	600

#	Article	IF	CITATIONS
37	Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for Highâ€Performance Liâ€Ion Batteries and Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 6186-6192.	21.0	598
38	Black Phosphorus Quantum Dots. Angewandte Chemie - International Edition, 2015, 54, 3653-3657.	13.8	594
39	Synthesis of Two-Dimensional CoS _{1.097} /Nitrogen-Doped Carbon Nanocomposites Using Metal–Organic Framework Nanosheets as Precursors for Supercapacitor Application. Journal of the American Chemical Society, 2016, 138, 6924-6927.	13.7	591
40	Oneâ€pot Synthesis of CdS Nanocrystals Hybridized with Single‣ayer Transitionâ€Metal Dichalcogenide Nanosheets for Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 1210-1214.	13.8	584
41	25th Anniversary Article: Hybrid Nanostructures Based on Twoâ€Dimensional Nanomaterials. Advanced Materials, 2014, 26, 2185-2204.	21.0	579
42	Interlayer Breathing and Shear Modes in Few-Trilayer MoS ₂ and WSe ₂ . Nano Letters, 2013, 13, 1007-1015.	9.1	576
43	Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano, 2010, 4, 3201-3208.	14.6	571
44	Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano, 2010, 4, 5263-5268.	14.6	566
45	Solutionâ€Processed Twoâ€Dimensional MoS ₂ Nanosheets: Preparation, Hybridization, and Applications. Angewandte Chemie - International Edition, 2016, 55, 8816-8838.	13.8	557
46	Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti ₃ C ₂ T _{<i>x</i>} Nanosheets for Electrocatalytic Oxygen Evolution. ACS Nano, 2017, 11, 5800-5807.	14.6	557
47	One-step synthesis of Ni ₃ S ₂ nanorod@Ni(OH) ₂ nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy and Environmental Science, 2013, 6, 2216-2221.	30.8	554
48	Mechanical Exfoliation and Characterization of Single―and Fewâ€Layer Nanosheets of WSe ₂ , TaS ₂ , and TaSe ₂ . Small, 2013, 9, 1974-1981.	10.0	544
49	Preparation of MoS ₂ â€Coated Threeâ€Dimensional Graphene Networks for Highâ€Performance Anode Material in Lithiumâ€Ion Batteries. Small, 2013, 9, 3433-3438.	10.0	542
50	Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Research, 2010, 3, 643-652.	10.4	534
51	Grapheneâ€Based Electrochemical Sensors. Small, 2013, 9, 1160-1172.	10.0	526
52	Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nature Communications, 2015, 6, 7873.	12.8	526
53	An Effective Method for the Fabrication of Few‣ayerâ€Thick Inorganic Nanosheets. Angewandte Chemie - International Edition, 2012, 51, 9052-9056.	13.8	520
54	Polymer Pen Lithography. Science, 2008, 321, 1658-1660.	12.6	501

#	Article	IF	CITATIONS
55	Graphene Quantum Dots Coated VO ₂ Arrays for Highly Durable Electrodes for Li and Na Ion Batteries. Nano Letters, 2015, 15, 565-573.	9.1	493
56	A V ₂ O ₅ /Conductiveâ€Polymer Core/Shell Nanobelt Array on Threeâ€Dimensional Graphite Foam: A Highâ€Rate, Ultrastable, and Freestanding Cathode for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 5794-5800.	21.0	450
57	Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano, 2015, 9, 5198-5207.	14.6	441
58	Bioinspired Design of Ultrathin 2D Bimetallic Metal–Organicâ€Framework Nanosheets Used as Biomimetic Enzymes. Advanced Materials, 2016, 28, 4149-4155.	21.0	440
59	Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection. Journal of the American Chemical Society, 2017, 139, 8698-8704.	13.7	440
60	Solutionâ€Processed Twoâ€Dimensional Metal Dichalcogenideâ€Based Nanomaterials for Energy Storage and Conversion. Advanced Materials, 2016, 28, 6167-6196.	21.0	438
61	Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 2011, 21, 3422.	6.7	430
62	A New Type of Porous Graphite Foams and Their Integrated Composites with Oxide/Polymer Core/Shell Nanowires for Supercapacitors: Structural Design, Fabrication, and Full Supercapacitor Demonstrations. Nano Letters, 2014, 14, 1651-1658.	9.1	428
63	Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Science Advances, 2015, 1, e1500259.	10.3	427
64	Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy and Environmental Science, 2012, 5, 6559.	30.8	421
65	Synthesis of Freeâ€Standing Metal Sulfide Nanoarrays via Anion Exchange Reaction and Their Electrochemical Energy Storage Application. Small, 2014, 10, 766-773.	10.0	413
66	Production of Twoâ€Ðimensional Nanomaterials via Liquidâ€Based Direct Exfoliation. Small, 2016, 12, 272-293.	10.0	407
67	Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy and Environmental Science, 2013, 6, 987.	30.8	404
68	Grapheneâ€Based Materials for Solar Cell Applications. Advanced Energy Materials, 2014, 4, 1300574.	19.5	398
69	Threeâ€Dimensional Architectures Constructed from Transitionâ€Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angewandte Chemie - International Edition, 2018, 57, 626-646.	13.8	398
70	Preparation of MoS ₂ â€Polyvinylpyrrolidone Nanocomposites for Flexible Nonvolatile Rewritable Memory Devices with Reduced Graphene Oxide Electrodes. Small, 2012, 8, 3517-3522.	10.0	393
71	Visual Cocaine Detection with Gold Nanoparticles and Rationally Engineered Aptamer Structures. Small, 2008, 4, 1196-1200.	10.0	390
72	Reduced Graphene Oxideâ€Wrapped MoO ₃ Composites Prepared by Using Metal–Organic Frameworks as Precursor for Allâ€Solidâ€State Flexible Supercapacitors. Advanced Materials, 2015, 27, 4695-4701.	21.0	388

#	Article	IF	CITATIONS
73	Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy and Environmental Science, 2011, 4, 4496.	30.8	386
74	Growth of Au Nanoparticles on 2D Metalloporphyrinic Metalâ€Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. Advanced Materials, 2017, 29, 1700102.	21.0	384
75	Electrochemically Reduced Single‣ayer MoS ₂ Nanosheets: Characterization, Properties, and Sensing Applications. Small, 2012, 8, 2264-2270.	10.0	373
76	All Metal Nitrides Solid‧tate Asymmetric Supercapacitors. Advanced Materials, 2015, 27, 4566-4571.	21.0	371
77	A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nature Communications, 2012, 3, 1177.	12.8	368
78	Twoâ€Ðimensional Metal–Organic Framework Nanosheets. Small Methods, 2017, 1, 1600030.	8.6	364
79	Rapid and Reliable Thickness Identification of Two-Dimensional Nanosheets Using Optical Microscopy. ACS Nano, 2013, 7, 10344-10353.	14.6	359
80	Selfâ€Assembly of Single‣ayer CoAl‣ayered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Materials, 2016, 28, 7640-7645.	21.0	355
81	Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale, 2011, 3, 1084-1089.	5.6	352
82	Preparation of Highâ€Percentage 1Tâ€Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, 1705509.	21.0	341
83	Oneâ€Pot Synthesis of Highly Anisotropic Fiveâ€Foldâ€Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. Advanced Materials, 2016, 28, 8712-8717.	21.0	336
84	Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multiâ€Walled Carbon Nanotubes for Solidâ€State, Flexible, Asymmetric Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 4651-4656.	13.8	334
85	Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chemical Society Reviews, 2016, 45, 63-82.	38.1	330
86	Amphiphilic Graphene Composites. Angewandte Chemie - International Edition, 2010, 49, 9426-9429.	13.8	325
87	Growth of noble metal nanoparticles on single-layer TiS ₂ and TaS ₂ nanosheets for hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 797-803.	30.8	323
88	Single‣ayer Transition Metal Dichalcogenide Nanosheetâ€Based Nanosensors for Rapid, Sensitive, and Multiplexed Detection of DNA. Advanced Materials, 2015, 27, 935-939.	21.0	322
89	MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale, 2014, 6, 5624.	5.6	320
90	Epitaxial growth of hybrid nanostructures. Nature Reviews Materials, 2018, 3, .	48.7	318

#	Article	IF	CITATIONS
91	Ultrathin S-doped MoSe ₂ nanosheets for efficient hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 5597-5601.	10.3	317
92	Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chemical Society Reviews, 2017, 46, 6872-6904.	38.1	316
93	Transparent, Flexible, All-Reduced Graphene Oxide Thin Film Transistors. ACS Nano, 2011, 5, 5038-5044.	14.6	305
94	Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chemical Society Reviews, 2015, 44, 2615-2628.	38.1	302
95	Interfacing Live Cells with Nanocarbon Substrates. Langmuir, 2010, 26, 2244-2247.	3.5	301
96	Rationally Designed Hierarchical TiO ₂ @Fe ₂ O ₃ Hollow Nanostructures for Improved Lithium Ion Storage. Advanced Energy Materials, 2013, 3, 737-743.	19.5	296
97	Carbonâ€Based Functional Materials Derived from Waste for Water Remediation and Energy Storage. Advanced Materials, 2017, 29, 1605361.	21.0	293
98	3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing. ACS Applied Materials & Interfaces, 2012, 4, 3129-3133.	8.0	292
99	Optical Identification of Single―and Few‣ayer MoS ₂ Sheets. Small, 2012, 8, 682-686.	10.0	290
100	Metal Oxide oated Threeâ€Ðimensional Graphene Prepared by the Use of Metal–Organic Frameworks as Precursors. Angewandte Chemie - International Edition, 2014, 53, 1404-1409.	13.8	287
101	Electrical Detection of Metal Ions Using Field-Effect Transistors Based on Micropatterned Reduced Graphene Oxide Films. ACS Nano, 2011, 5, 1990-1994.	14.6	279
102	Conjugatedâ€Polyelectrolyteâ€Functionalized Reduced Graphene Oxide with Excellent Solubility and Stability in Polar Solvents. Small, 2010, 6, 663-669.	10.0	278
103	Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy and Environmental Science, 2014, 7, 2670-2679.	30.8	271
104	Highly Stable and Reversible Lithium Storage in SnO ₂ Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition. Nano Letters, 2014, 14, 4852-4858.	9.1	269
105	Au Nanoparticleâ€Modified MoS ₂ Nanosheetâ€Based Photoelectrochemical Cells for Water Splitting. Small, 2014, 10, 3537-3543.	10.0	265
106	Thermal Desorption Behavior and Binding Properties of DNA Bases and Nucleosides on Gold. Journal of the American Chemical Society, 2002, 124, 11248-11249.	13.7	264
107	Highâ€Performance Flexible Solidâ€State Ni/Fe Battery Consisting of Metal Oxides Coated Carbon Cloth/Carbon Nanofiber Electrodes. Advanced Energy Materials, 2016, 6, 1601034.	19.5	262
108	Synthesis and applications of graphene-based noble metal nanostructures. Materials Today, 2013, 16, 29-36.	14.2	257

#	Article	IF	CITATIONS
109	Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chemical Science, 2011, 2, 1817.	7.4	249
110	Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. Journal of Materials Chemistry, 2012, 22, 8634.	6.7	249
111	Ultrathin Twoâ€Dimensional Multinary Layered Metal Chalcogenide Nanomaterials. Advanced Materials, 2017, 29, 1701392.	21.0	242
112	Nanoporous Walls on Macroporous Foam: Rational Design of Electrodes to Push Areal Pseudocapacitance. Advanced Materials, 2012, 24, 4186-4190.	21.0	239
113	A Solutionâ€Processed Hole Extraction Layer Made from Ultrathin MoS ₂ Nanosheets for Efficient Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1262-1268.	19.5	231
114	Engineering the Absorption and Field Enhancement Properties of Au–TiO ₂ Nanohybrids <i>via</i> Whispering Gallery Mode Resonances for Photocatalytic Water Splitting. ACS Nano, 2016, 10, 4496-4503.	14.6	230
115	Layer Thinning and Etching of Mechanically Exfoliated MoS ₂ Nanosheets by Thermal Annealing in Air. Small, 2013, 9, 3314-3319.	10.0	229
116	Core-shell carbon materials derived from metal-organic frameworks as an efficient oxygen bifunctional electrocatalyst. Nano Energy, 2016, 30, 368-378.	16.0	229
117	Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal–organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horizons, 2017, 2, 99-105.	8.0	227
118	Epitaxial Growth of Hetero-Nanostructures Based on Ultrathin Two-Dimensional Nanosheets. Journal of the American Chemical Society, 2015, 137, 12162-12174.	13.7	218
119	Aptamerâ€Based Multicolor Fluorescent Gold Nanoprobes for Multiplex Detection in Homogeneous Solution. Small, 2010, 6, 201-204.	10.0	215
120	Bulk Heterojunction Polymer Memory Devices with Reduced Graphene Oxide as Electrodes. ACS Nano, 2010, 4, 3987-3992.	14.6	215
121	Stabilization of 4H hexagonal phase in gold nanoribbons. Nature Communications, 2015, 6, 7684.	12.8	215
122	High-Yield Exfoliation of Ultrathin Two-Dimensional Ternary Chalcogenide Nanosheets for Highly Sensitive and Selective Fluorescence DNA Sensors. Journal of the American Chemical Society, 2015, 137, 10430-10436.	13.7	214
123	Electron-Doping-Enhanced Trion Formation in Monolayer Molybdenum Disulfide Functionalized with Cesium Carbonate. ACS Nano, 2014, 8, 5323-5329.	14.6	211
124	Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy and Environmental Science, 2015, 8, 1559-1568.	30.8	210
125	Fabrication of Flexible, Allâ€Reduced Graphene Oxide Nonâ€Volatile Memory Devices. Advanced Materials, 2013, 25, 233-238.	21.0	207
126	Synthesis of Ultrathin PdCu Alloy Nanosheets Used as a Highly Efficient Electrocatalyst for Formic Acid Oxidation. Advanced Materials, 2017, 29, 1700769.	21.0	207

#	Article	IF	CITATIONS
127	Recent Advances in Sensing Applications of Twoâ€Dimensional Transition Metal Dichalcogenide Nanosheets and Their Composites. Advanced Functional Materials, 2017, 27, 1605817.	14.9	206
128	Ultrathin Twoâ€Dimensional Organic–Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability. Angewandte Chemie - International Edition, 2017, 56, 4252-4255.	13.8	206
129	Surfaceâ€Chargeâ€Mediated Formation of Hâ€TiO ₂ @Ni(OH) ₂ Heterostructures for Highâ€Performance Supercapacitors. Advanced Materials, 2017, 29, 1604164.	21.0	203
130	Reduced Graphene Oxideâ€Templated Photochemical Synthesis and in situ Assembly of Au Nanodots to Orderly Patterned Au Nanodot Chains. Small, 2010, 6, 513-516.	10.0	202
131	Allâ€Carbon Electronic Devices Fabricated by Directly Grown Singleâ€Walled Carbon Nanotubes on Reduced Graphene Oxide Electrodes. Advanced Materials, 2010, 22, 3058-3061.	21.0	201
132	Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Applied Physics Letters, 2013, 102, .	3.3	201
133	Thin metal nanostructures: synthesis, properties and applications. Chemical Science, 2015, 6, 95-111.	7.4	198
134	Few‣ayer Graphdiyne Nanosheets Applied for Multiplexed Realâ€Time DNA Detection. Advanced Materials, 2017, 29, 1606755.	21.0	198
135	Controllable Growth of Conducting Polymers Shell for Constructing High-Quality Organic/Inorganic Core/Shell Nanostructures and Their Optical-Electrochemical Properties. Nano Letters, 2013, 13, 4562-4568.	9.1	197
136	Cobalt Oxide Nanowall Arrays on Reduced Graphene Oxide Sheets with Controlled Phase, Grain Size, and Porosity for Li-Ion Battery Electrodes. Journal of Physical Chemistry C, 2011, 115, 8400-8406.	3.1	196
137	Carbon Microbelt Aerogel Prepared by Waste Paper: An Efficient and Recyclable Sorbent for Oils and Organic Solvents. Small, 2014, 10, 3544-3550.	10.0	196
138	Synthesis of 4H/ <i>fcc</i> Noble Multimetallic Nanoribbons for Electrocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 1414-1419.	13.7	196
139	Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nature Communications, 2015, 6, 6571.	12.8	195
140	A Universal, Rapid Method for Clean Transfer of Nanostructures onto Various Substrates. ACS Nano, 2014, 8, 6563-6570.	14.6	192
141	Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosensors and Bioelectronics, 2011, 26, 3881-3886.	10.1	191
142	Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. Nanoscale, 2012, 4, 293-297.	5.6	185
143	A Facile and Universal Topâ€Down Method for Preparation of Monodisperse Transitionâ€Metal Dichalcogenide Nanodots. Angewandte Chemie - International Edition, 2015, 54, 5425-5428.	13.8	185
144	In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature Communications, 2017, 8, 15447.	12.8	185

#	Article	IF	CITATIONS
145	Hollow core–shell nanostructure supercapacitor electrodes: gap matters. Energy and Environmental Science, 2012, 5, 9085.	30.8	184
146	Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template. Advanced Materials, 2012, 24, 4138-4142.	21.0	183
147	One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition. Carbon, 2011, 49, 2944-2949.	10.3	182
148	Enhanced Thermopower of Graphene Films with Oxygen Plasma Treatment. ACS Nano, 2011, 5, 2749-2755.	14.6	181
149	Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications. Accounts of Chemical Research, 2016, 49, 2841-2850.	15.6	181
150	A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries. Nanoscale, 2013, 5, 1456.	5.6	177
151	Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nature Chemistry, 2016, 8, 470-475.	13.6	177
152	Nano-tungsten carbide decorated graphene as co-catalysts for enhanced hydrogen evolution on molybdenum disulfide. Chemical Communications, 2013, 49, 4884.	4.1	175
153	Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. Materials Chemistry Frontiers, 2017, 1, 24-36.	5.9	173
154	Fabrication of Sub-50-nm Solid-State Nanostructures on the Basis of Dip-Pen Nanolithography. Nano Letters, 2003, 3, 43-45.	9.1	171
155	Improved Reversibility of Fe ³⁺ /Fe ⁴⁺ Redox Couple in Sodium Super Ion Conductor Type Na ₃ Fe ₂ (PO ₄) ₃ for Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605694.	21.0	169
156	Coating Two-Dimensional Nanomaterials with Metal–Organic Frameworks. ACS Nano, 2014, 8, 8695-8701.	14.6	168
157	Hydrophilic Nitrogen and Sulfur Coâ€doped Molybdenum Carbide Nanosheets for Electrochemical Hydrogen Evolution. Small, 2015, 11, 6278-6284.	10.0	168
158	Carbonâ€Based Sorbents with Threeâ€Dimensional Architectures for Water Remediation. Small, 2015, 11, 3319-3336.	10.0	166
159	TiO2 nanotube @ SnO2 nanoflake core–branch arrays for lithium-ion battery anode. Nano Energy, 2014, 4, 105-112.	16.0	165
160	Flexible carbon nanotube papers with improved thermoelectric properties. Energy and Environmental Science, 2012, 5, 5364-5369.	30.8	164
161	Multifunctional Architectures Constructing of PANI Nanoneedle Arrays on MoS ₂ Thin Nanosheets for Highâ€Energy Supercapacitors. Small, 2015, 11, 4123-4129.	10.0	164
162	Electrochemical Deposition of Semiconductor Oxides on Reduced Graphene Oxide-Based Flexible, Transparent, and Conductive Electrodes. Journal of Physical Chemistry C, 2010, 114, 11816-11821.	3.1	159

#	Article	IF	CITATIONS
163	Formation of monometallic Au and Pd and bimetallic Au–Pd nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol. Journal of Catalysis, 2012, 289, 105-117.	6.2	155
164	VO ₂ nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material. Materials Horizons, 2015, 2, 237-244.	12.2	152
165	Submonolayered Ru Deposited on Ultrathin Pd Nanosheets used for Enhanced Catalytic Applications. Advanced Materials, 2016, 28, 10282-10286.	21.0	148
166	3D Carbon/Cobaltâ€Nickel Mixedâ€Oxide Hybrid Nanostructured Arrays for Asymmetric Supercapacitors. Small, 2014, 10, 2937-2945.	10.0	146
167	Memory Devices Using a Mixture of MoS ₂ and Graphene Oxide as the Active Layer. Small, 2013, 9, 727-731.	10.0	144
168	High‥ield Synthesis of Crystalâ€Phaseâ€Heterostructured 4H/fcc Au@Pd Core–Shell Nanorods for Electrocatalytic Ethanol Oxidation. Advanced Materials, 2017, 29, 1701331.	21.0	144
169	A Graphene–Conjugated Oligomer Hybrid Probe for Lightâ€Up Sensing of Lectin and <i>Escherichia Coli</i> . Advanced Materials, 2011, 23, 4386-4391.	21.0	141
170	Novel Metal@Carbon Spheres Core–Shell Arrays by Controlled Selfâ€Assembly of Carbon Nanospheres: A Stable and Flexible Supercapacitor Electrode. Advanced Energy Materials, 2015, 5, 1401709.	19.5	139
171	A Robust Hybrid Zn-Battery with Ultralong Cycle Life. Nano Letters, 2017, 17, 156-163.	9.1	138
172	Controlled Synthesis of Carbon-Coated Cobalt Sulfide Nanostructures in Oil Phase with Enhanced Li Storage Performances. ACS Applied Materials & Interfaces, 2012, 4, 2999-3006.	8.0	137
173	Graphene Oxideâ€Templated Synthesis of Ultrathin or Tadpoleâ€Shaped Au Nanowires with Alternating <i>hcp</i> and <i>fcc</i> Domains. Advanced Materials, 2012, 24, 979-983.	21.0	135
174	Controlled synthesis of hierarchical graphene-wrapped TiO ₂ @Co ₃ O ₄ coaxial nanobelt arrays for high-performance lithium storage. Journal of Materials Chemistry A, 2013, 1, 273-281.	10.3	135
175	Two-dimensional NiCo ₂ O ₄ nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale, 2015, 7, 7035-7039.	5.6	134
176	Preparation of MoS ₂ –MoO ₃ Hybrid Nanomaterials for Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2014, 53, 12560-12565.	13.8	133
177	Supramolecular Polymerization Promoted In Situ Fabrication of Nitrogenâ€Doped Porous Graphene Sheets as Anode Materials for Liâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1500559.	19.5	133
178	Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst. Nanoscale, 2012, 4, 2478.	5.6	131
179	Full Solutionâ€Processed Synthesis of All Metal Oxideâ€Based Treeâ€like Heterostructures on Fluorineâ€Doped Tin Oxide for Water Splitting. Advanced Materials, 2012, 24, 5374-5378.	21.0	131
180	Synthesis of Twoâ€Dimensional Transitionâ€Metal Phosphates with Highly Ordered Mesoporous Structures for Lithiumâ€Ion Battery Applications. Angewandte Chemie - International Edition, 2014, 53, 9352-9355.	13.8	128

#	Article	IF	CITATIONS
181	Revealing the Role of Interfacial Properties on Catalytic Behaviors by <i>in Situ</i> Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2017, 139, 10339-10346.	13.7	127
182	Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes. Journal of Materials Chemistry, 2012, 22, 23439.	6.7	126
183	Forest of Gold Nanowires: A New Type of Nanocrystal Growth. ACS Nano, 2013, 7, 2733-2740.	14.6	126
184	Preparation of Singleâ€Layer MoS ₂ <i>_x</i> Se _{2(1â€} <i>_x</i> ₎ and Mo <i>_x</i> W _{1â€} <i>_x</i> S ₂ Nanosheets with Highâ€Concentration Metallic 1T Phase. Small, 2016, 12, 1866-1874.	10.0	126
185	Postchemistry of Organic Particles: When TTF Microparticles Meet TCNQ Microstructures in Aqueous Solution. Journal of the American Chemical Society, 2010, 132, 6926-6928.	13.7	125
186	CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors. Energy and Environmental Science, 2011, 4, 5000.	30.8	125
187	Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chemical Communications, 2010, 46, 6974.	4.1	124
188	Self-Assembled Chiral Nanofibers from Ultrathin Low-Dimensional Nanomaterials. Journal of the American Chemical Society, 2015, 137, 1565-1571.	13.7	123
189	Synthesis, structure, and optoelectronic properties of a new twistacene 1,2,3,4,6,13-hexaphenyl-7 : 8,11 : 12-bisbenzo-pentacene. Journal of Materials Chemistry, 2010,	2 ପ, 8167.	121
190	Synthesis of Gold Squareâ€like Plates from Ultrathin Gold Square Sheets: The Evolution of Structure Phase and Shape. Angewandte Chemie - International Edition, 2011, 50, 12245-12248.	13.8	121
191	A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. Nanoscale, 2015, 7, 10162-10169.	5.6	121
192	Fabrication of Ultralong Hybrid Microfibers from Nanosheets of Reduced Graphene Oxide and Transitionâ€Metal Dichalcogenides and their Application as Supercapacitors. Angewandte Chemie - International Edition, 2014, 53, 12576-12580.	13.8	119
193	Crystal Structure and Phototransistor Behavior of N-Substituted Heptacence. ACS Applied Materials & Interfaces, 2012, 4, 1883-1886.	8.0	118
194	Copperâ€Based Ternary and Quaternary Semiconductor Nanoplates: Templated Synthesis, Characterization, and Photoelectrochemical Properties. Angewandte Chemie - International Edition, 2014, 53, 8929-8933.	13.8	118
195	Edge Epitaxy of Two-Dimensional MoSe ₂ and MoS ₂ Nanosheets on One-Dimensional Nanowires. Journal of the American Chemical Society, 2017, 139, 8653-8660.	13.7	118
196	Investigation of MoS ₂ and Graphene Nanosheets by Magnetic Force Microscopy. ACS Nano, 2013, 7, 2842-2849.	14.6	117
197	Preparation, characterization, and photoswitching/light-emitting behaviors of coronene nanowires. Journal of Materials Chemistry, 2011, 21, 1423-1427.	6.7	116
198	Gold Coating of Silver Nanoprisms. Advanced Functional Materials, 2012, 22, 849-854.	14.9	116

#	Article	IF	CITATIONS
199	Twoâ€Dimensional CuSe Nanosheets with Microscale Lateral Size: Synthesis and Templateâ€Assisted Phase Transformation. Angewandte Chemie - International Edition, 2014, 53, 5083-5087.	13.8	115
200	Multilayer Stacked Lowâ€Temperatureâ€Reduced Graphene Oxide Films: Preparation, Characterization, and Application in Polymer Memory Devices. Small, 2010, 6, 1536-1542.	10.0	113
201	Synthesis, Structure, and Physical Properties of 5,7,14,16â€Tetraphenylâ€8:9,12:13â€bisbenzoâ€hexatwistacene. Chemistry - an Asian Journal, 2012, 7, 561-564.	[•] 3.3	112
202	Synthesis of Ultrathin Faceâ€Centeredâ€Cubic Au@Pt and Au@Pd Core–Shell Nanoplates from Hexagonalâ€Closeâ€Packed Au Square Sheets. Angewandte Chemie - International Edition, 2015, 54, 5672-5676.	13.8	111
203	Preparation of Superhydrophilic and Underwater Superoleophobic Nanofiberâ€Based Meshes from Waste Class for Multifunctional Oil/Water Separation. Small, 2017, 13, 1700391.	10.0	111
204	Synthesis, Characterization, and Bipolar Transporting Behavior of a New Twisted Polycyclic Aromatic Hydrocarbon: 1′,4′â€Diphenylâ€naphthoâ€(2′.3′:1.2)â€pyreneâ€6′â€nitroâ€7′â€methyl Carbox Journal, 2010, 16, 7422-7426.	⟨y ła ₺e. Che	:muinsobry - A Eu
205	Approaching a stable, green twisted heteroacene through "clean reaction―strategy. Chemical Communications, 2012, 48, 5974.	4.1	110
206	Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N–C) as efficient oxygen catalysts for Zn-air batteries. Nanoscale, 2016, 8, 5067-5075.	5.6	109
207	Lengthâ€Dependent Conductance of Molecular Wires and Contact Resistance in Metal–Molecule–Metal Junctions. ChemPhysChem, 2008, 9, 1416-1424.	2.1	107
208	Threeâ€Dimensional Graphene Network Composites for Detection of Hydrogen Peroxide. Small, 2013, 9, 1703-1707.	10.0	107
209	Controllable Synthesis of Atomically Thin Typeâ€I Weyl Semimetal WTe ₂ Nanosheets: An Advanced Electrode Material for Allâ€Solidâ€State Flexible Supercapacitors. Advanced Materials, 2017, 29, 1701909.	21.0	107
210	CdS core-Au plasmonic satellites nanostructure enhanced photocatalytic hydrogen evolution reaction. Nano Energy, 2018, 49, 363-371.	16.0	107
211	DNAâ€Templated Silver Nanoclusters for Multiplexed Fluorescent DNA Detection. Small, 2015, 11, 1385-1389.	10.0	106
212	Ultrahigh Performance of Novel Capacitive Deionization Electrodes based on A Three-Dimensional Graphene Architecture with Nanopores. Scientific Reports, 2016, 6, 18966.	3.3	105
213	Self-branched α-MnO ₂ /δ-MnO ₂ heterojunction nanowires with enhanced pseudocapacitance. Materials Horizons, 2017, 4, 415-422.	12.2	105
214	Butterfly-Shaped Conjugated Oligoelectrolyte/Graphene Oxide Integrated Assay for Light-Up Visual Detection of Heparin. Analytical Chemistry, 2011, 83, 7849-7855.	6.5	104
215	The Molecular Basis of Distinct Aggregation Pathways of Islet Amyloid Polypeptide. Journal of Biological Chemistry, 2011, 286, 6291-6300.	3.4	104
216	Conformally deposited NiO on a hierarchical carbon support for high-power and durable asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23283-23288.	10.3	103

#	Article	IF	CITATIONS
217	Enhanced Lithium Storage Performance of CuO Nanowires by Coating of Graphene Quantum Dots. Advanced Materials Interfaces, 2015, 2, 1400499.	3.7	102
218	In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metalâ€Organic Framework Nanosheets. Small, 2016, 12, 4669-4674.	10.0	101
219	DPN-Generated Nanostructures Made of Gold, Silver, and Palladium. Chemistry of Materials, 2004, 16, 1480-1484.	6.7	99
220	Aminosilane Micropatterns on Hydroxyl-Terminated Substrates: Fabrication and Applications. Langmuir, 2010, 26, 5603-5609.	3.5	98
221	Hierarchical TiO2 nanobelts@MnO2 ultrathin nanoflakes core–shell array electrode materials for supercapacitors. RSC Advances, 2013, 3, 14413.	3.6	98
222	Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Research, 2015, 8, 40-55.	10.4	97
223	Recent Methods for the Synthesis of Noble-Metal-Free Hydrogen-Evolution Electrocatalysts: From Nanoscale to Sub-nanoscale. Small Methods, 2017, 1, 1700118.	8.6	96
224	Synthesis, Characterization, and Physical Properties of a Conjugated Heteroacene: 2â€Methylâ€1,4,6,7,8,9â€hexaphenylbenz(<i>g</i>)isoquinolinâ€3(2 <i>H</i>)â€one (BlQ). Chemistry - an Asian Journal, 2011, 6, 856-862.	3.3	95
225	Synthesis, Characterization, Self-Assembly, and Physical Properties of 11-Methylbenzo[<i>d</i>]pyreno[4,5- <i>b</i>]furan. Organic Letters, 2011, 13, 3004-3007.	4.6	94
226	Biofunctionalized nanoarrays of inorganic structures prepared by dip-pen nanolithography. Nanotechnology, 2003, 14, 1113-1117.	2.6	92
227	Shape-Controlled Micro/Nanostructures of 9,10-Diphenylanthracene (DPA) and Their Application in Light-Emitting Devices. Journal of Physical Chemistry C, 2011, 115, 7924-7927.	3.1	92
228	Chemical Reaction Between Ag Nanoparticles and TCNQ Microparticles in Aqueous Solution. Small, 2011, 7, 1242-1246.	10.0	92
229	Self-Assembly of Two-Dimensional Nanosheets into One-Dimensional Nanostructures. CheM, 2016, 1, 59-77.	11.7	92
230	Interfacial Interactions in van der Waals Heterostructures of MoS ₂ and Graphene. ACS Nano, 2017, 11, 11714-11723.	14.6	92
231	Electrochemical deposition of Cl-doped n-type Cu ₂ 0 on reduced graphene oxide electrodes. Journal of Materials Chemistry, 2011, 21, 3467-3470.	6.7	91
232	Sn Nanoparticles Encapsulated in 3D Nanoporous Carbon Derived from a Metal–Organic Framework for Anode Material in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 17172-17177.	8.0	89
233	Fabrication of Polymer Nanocavities with Tailored Openings. ACS Nano, 2009, 3, 3469-3474.	14.6	88
234	Modulating electronic transport properties of MoS2 field effect transistor by surface overlayers. Applied Physics Letters, 2013, 103, .	3.3	88

#	Article	IF	CITATIONS
235	Liquidâ€Phase Epitaxial Growth of Twoâ€Dimensional Semiconductor Heteroâ€nanostructures. Angewandte Chemie - International Edition, 2015, 54, 1841-1845.	13.8	88
236	Dip Pen Nanolithography (DPN): process and instrument performance with Nanolnk's Nscriptor system. Ultramicroscopy, 2005, 103, 117-132.	1.9	86
237	Co@Co ₃ O ₄ @PPD Core@bishell Nanoparticleâ€Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 2580-2587.	10.0	86
238	Dialdehyde Cellulose as a Bio-Based Robust Adhesive for Wood Bonding. ACS Sustainable Chemistry and Engineering, 2019, 7, 10452-10459.	6.7	86
239	Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor. Scientific Reports, 2012, 2, 981.	3.3	85
240	Graphene Oxide as a Novel Nanoplatform for Enhancement of Aggregationâ€Induced Emission of Silole Fluorophores. Advanced Materials, 2012, 24, 4191-4195.	21.0	85
241	Ternary Chalcogenide Nanosheets with Ultrahigh Photothermal Conversion Efficiency for Photoacoustic Theranostics. Small, 2017, 13, 1604139.	10.0	83
242	Photochemically Controlled Synthesis of Anisotropic Au Nanostructures: Platelet-like Au Nanorods and Six-Star Au Nanoparticles. ACS Nano, 2010, 4, 6196-6202.	14.6	82
243	Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. RSC Advances, 2011, 1, 117.	3.6	82
244	Chemoselective Photodeoxidization of Graphene Oxide Using Sterically Hindered Amines as Catalyst: Synthesis and Applications. ACS Nano, 2012, 6, 3027-3033.	14.6	82
245	Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nanoscale, 2014, 6, 12340-12344.	5.6	82
246	Thiazole derivative-modified upconversion nanoparticles for Hg ²⁺ detection in living cells. Nanoscale, 2016, 8, 276-282.	5.6	82
247	Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons. Chemical Science, 2017, 8, 795-799.	7.4	81
248	Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2–Fe2O3/rCO composite nanostructures. Journal of Materials Chemistry, 2011, 21, 12770.	6.7	80
249	Kinetically Controlled Assembly of a Spirocyclic Aromatic Hydrocarbon into Polyhedral Micro/Nanocrystals. ACS Nano, 2012, 6, 5309-5319.	14.6	80
250	Synthesis of graphene–conjugated polymer nanocomposites for electronic device applications. Nanoscale, 2013, 5, 1440.	5.6	80
251	Chemically engineered graphene oxide as high performance cathode materials for Li-ion batteries. Carbon, 2014, 76, 148-154.	10.3	80
252	Nanocomposites of Graphene Oxide and Upconversion Rareâ€Earth Nanocrystals with Superior Optical Limiting Performance. Small, 2012, 8, 2271-2276.	10.0	79

#	Article	IF	CITATIONS
253	Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. Nanoscale, 2013, 5, 6040.	5.6	79
254	Singleâ€Layer Transition Metal Dichalcogenide Nanosheetâ€Assisted Assembly of Aggregationâ€Induced Emission Molecules to Form Organic Nanosheets with Enhanced Fluorescence. Advanced Materials, 2014, 26, 1735-1739.	21.0	77
255	Hierarchically porous three-dimensional electrodes of CoMoO ₄ and ZnCo ₂ O ₄ and their high anode performance for lithium ion batteries. Nanoscale, 2014, 6, 10556.	5.6	77
256	Porous nitrogen doped carbon foam with excellent resilience for self-supported oxygen reduction catalyst. Carbon, 2015, 95, 388-395.	10.3	77
257	Fabrication of nanoelectrode ensembles by electrodepositon of Au nanoparticles on single-layer graphene oxide sheets. Nanoscale, 2012, 4, 2728.	5.6	76
258	Scanning Probe Contact Printing. Langmuir, 2003, 19, 8951-8955.	3.5	75
259	Graphene Oxide as a Carbon Source for Controlled Growth of Carbon Nanowires. Small, 2011, 7, 1199-1202.	10.0	75
260	A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling inÂvivo. Biomaterials, 2015, 54, 34-43.	11.4	75
261	Patterning Colloidal Metal Nanoparticles for Controlled Growth of Carbon Nanotubes. Advanced Materials, 2008, 20, 4873-4878.	21.0	74
262	Facile fabrication of hierarchical ZnCo ₂ O ₄ /NiO core/shell nanowire arrays with improved lithium-ion battery performance. Nanoscale, 2014, 6, 6563-6568.	5.6	73
263	Goldâ€Nanoparticleâ€Embedded Polydimethylsiloxane Elastomers for Highly Sensitive Raman Detection. Small, 2012, 8, 1336-1340.	10.0	72
264	Facile synthesis of gold nanomaterials with unusual crystal structures. Nature Protocols, 2017, 12, 2367-2376.	12.0	72
265	Properties of Single Dendrimer Molecules Studied by Atomic Force Microscopyâ€. Langmuir, 2000, 16, 9009-9014.	3.5	71
266	A Universal Method for Preparation of Noble Metal Nanoparticleâ€Decorated Transition Metal Dichalcogenide Nanobelts. Advanced Materials, 2014, 26, 6250-6254.	21.0	71
267	Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering. Chemical Communications, 2011, 47, 8560.	4.1	69
268	Nanolithography of Single-Layer Graphene Oxide Films by Atomic Force Microscopy. Langmuir, 2010, 26, 6164-6166.	3.5	68
269	A Novel Graphene-Polysulfide Anode Material for High-Performance Lithium-Ion Batteries. Scientific Reports, 2013, 3, 2341.	3.3	68
270	AuAg Nanosheets Assembled from Ultrathin AuAg Nanowires. Journal of the American Chemical Society, 2015, 137, 1444-1447.	13.7	68

#	Article	IF	CITATIONS
271	Oriented Molecular Attachments Through Sol–Gel Chemistry for Synthesis of Ultrathin Hydrated Vanadium Pentoxide Nanosheets and Their Applications. Small, 2013, 9, 716-721.	10.0	67
272	Preparation of Weavable, All arbon Fibers for Nonâ€Volatile Memory Devices. Angewandte Chemie - International Edition, 2013, 52, 13351-13355.	13.8	67
273	Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes. Nano Letters, 2017, 17, 5726-5733.	9.1	67
274	Transformable masks for colloidal nanosynthesis. Nature Communications, 2018, 9, 563.	12.8	67
275	Binaryâ€Phased Nanoparticles for Enhanced Thermoelectric Properties. Advanced Materials, 2009, 21, 3196-3200.	21.0	66
276	Surfactantâ€Free Subâ€2 nm Ultrathin Triangular Gold Nanoframes. Small, 2013, 9, 2880-2886.	10.0	66
277	Self-Assembly of Polyphenylene Dendrimers into Micrometer Long Nanofibers:  An Atomic Force Microscopy Study. Langmuir, 2002, 18, 2385-2391.	3.5	65
278	Preparation of Cobalt Sulfide Nanoparticle-Decorated Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide Aerogel Used as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 5920-5926.	10.0	65
279	Recent Progress in the Preparation, Assembly, Transformation, and Applications of Layer‧tructured Nanodisks beyond Graphene. Advanced Materials, 2017, 29, 1701704.	21.0	65
280	Highly Sensitive and Selective Aptamer-Based Fluorescence Detection of a Malarial Biomarker Using Single-Layer MoS ₂ Nanosheets. ACS Sensors, 2016, 1, 1315-1321.	7.8	64
281	Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. Nanoscale, 2017, 9, 5102-5109.	5.6	63
282	Atomic-layer-deposited iron oxide on arrays of metal/carbon spheres and their application for electrocatalysis. Nano Energy, 2016, 20, 244-253.	16.0	62
283	Dip Pen Nanolithography Stamp Tip. Nano Letters, 2004, 4, 1649-1655.	9.1	61
284	Mechanism Studies on the Superior Optical Limiting Observed in Graphene Oxide Covalently Functionalized with Upconversion NaYF ₄ :Yb ³⁺ /Er ³⁺ Nanoparticles. Small, 2012, 8, 2163-2168.	10.0	59
285	Ordered Porous Pd Octahedra Covered with Monolayer Ru Atoms. Journal of the American Chemical Society, 2015, 137, 14566-14569.	13.7	59
286	Synthesis of 4H/ <i>fcc</i> â€Au@M (M = Ir, Os, IrOs) Coreâ€Shell Nanoribbons For Electrocatalytic Oxygen Evolution Reaction. Small, 2016, 12, 3908-3913.	10.0	59
287	Preparation of Ultrathin Twoâ€Dimensional Ti _{<i>x</i>} Ta _{1â^'<i>x</i>} S _{<i>y</i>} O _{<i>z</i>} Nanosheets as Highly Efficient Photothermal Agents. Angewandte Chemie - International Edition, 2017, 56, 7842-7846.	13.8	59
288	High-Throughput Dip-Pen-Nanolithography-Based Fabrication of Si Nanostructures. Small, 2007, 3, 81-85.	10.0	57

#	Article	IF	CITATIONS
289	Graphene Oxide Scrolls on Hydrophobic Substrates Fabricated by Molecular Combing and Their Application in Gas Sensing. Small, 2013, 9, 382-386.	10.0	57
290	Anodized Aluminum Oxide Templated Synthesis of Metal–Organic Frameworks Used as Membrane Reactors. Angewandte Chemie - International Edition, 2017, 56, 578-581.	13.8	57
291	Nanopaper based on Ag/TiO2 nanobelts heterostructure for continuous-flow photocatalytic treatment of liquid and gas phase pollutants. Journal of Hazardous Materials, 2011, 197, 19-25.	12.4	56
292	Templateâ€Free Pseudomorphic Synthesis of Tungsten Carbide Nanorods. Small, 2012, 8, 3350-3356.	10.0	56
293	Preparation and applications of novel composites composed of metal–organic frameworks and two-dimensional materials. Chemical Communications, 2016, 52, 1555-1562.	4.1	56
294	Binder Free Hierarchical Mesoporous Carbon Foam for High Performance Lithium Ion Battery. Scientific Reports, 2017, 7, 1440.	3.3	56
295	Fabrication of Coreâ^'Shell Structure of M@C (M=Se, Au, Ag ₂ Se) and Transformation to Yolkâ''Shell Structure by Electron Beam Irradiation or Vacuum Annealing. Chemistry of Materials, 2009, 21, 3848-3852.	6.7	55
296	Free-Standing Bimetallic Nanorings and Nanoring Arrays Made by On-Wire Lithography. ACS Nano, 2010, 4, 7676-7682.	14.6	55
297	Bottomâ€Up Preparation of Porous Metalâ€Oxide Ultrathin Sheets with Adjustable Composition/Phases and Their Applications. Small, 2011, 7, 3458-3464.	10.0	55
298	Triple‣ayer (Au@Perylene)@Polyaniline Nanocomposite: Unconventional Growth of Faceted Organic Nanocrystals on Polycrystalline Au. Angewandte Chemie - International Edition, 2011, 50, 9898-9902.	13.8	55
299	Synthesis of Open-Ended, Cylindrical Auâ~'Ag Alloy Nanostructures on a Si/SiOx Surface. Nano Letters, 2004, 4, 1493-1495.	9.1	54
300	Controlled Assembly of Gold Nanoparticles and Graphene Oxide Sheets on Dip Pen Nanolithography-Generated Templates. Langmuir, 2009, 25, 10455-10458.	3.5	54
301	An Onâ€Nanoparticle Rolling ircle Amplification Platform for Ultrasensitive Protein Detection in Biological Fluids. Small, 2010, 6, 2520-2525.	10.0	54
302	A Method for Fabrication of Graphene Oxide Nanoribbons from Graphene Oxide Wrinkles. Journal of Physical Chemistry C, 2009, 113, 19119-19122.	3.1	52
303	Piezoelectricity in Twoâ€Đimensional Materials. Angewandte Chemie - International Edition, 2015, 54, 4432-4434.	13.8	52
304	Surface Rutilization of Anatase TiO ₂ Nanorods for Creation of Synergistically Bridging and Fencing Electron Highways. Advanced Functional Materials, 2016, 26, 456-465.	14.9	52
305	Intrinsically Conductive Perovskite Oxides with Enhanced Stability and Electrocatalytic Activity for Oxygen Reduction Reactions. ACS Catalysis, 2016, 6, 7865-7871.	11.2	51
306	Construction of ultrafine and stable PtFe nano-alloy with ultra-low Pt loading for complete removal of CO in PROX at room temperature. Applied Catalysis B: Environmental, 2016, 180, 237-245.	20.2	51

#	Article	IF	CITATIONS
307	Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes. Journal of Physical Chemistry C, 2011, 115, 15973-15979.	3.1	50
308	Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction. Nanoscale, 2015, 7, 9394-9398.	5.6	50
309	Organic-Dye-Modified Upconversion Nanoparticle as a Multichannel Probe To Detect Cu ²⁺ in Living Cells. ACS Applied Materials & Interfaces, 2018, 10, 1028-1032.	8.0	49
310	Demonstration of High-Resolution Capability of Chemical Force Titration via Study of Acid/Base Properties of a Patterned Self-Assembled Monolayer. Langmuir, 2000, 16, 517-521.	3.5	48
311	Combat biofouling with microscopic ridge-like surface morphology: a bioinspired study. Journal of the Royal Society Interface, 2018, 15, 20170823.	3.4	48
312	Highly Efficient Zn–Cu–In–Se Quantum Dot-Sensitized Solar Cells through Surface Capping with Ascorbic Acid. ACS Applied Materials & Interfaces, 2019, 11, 6927-6936.	8.0	48
313	Weavable, Highâ€Performance, Solidâ€State Supercapacitors Based on Hybrid Fibers Made of Sandwiched Structure of MWCNT/rGO/MWCNT. Advanced Electronic Materials, 2016, 2, 1600102.	5.1	47
314	Molecularâ€Level Design of Hierarchically Porous Carbons Codoped with Nitrogen and Phosphorus Capable of In Situ Selfâ€Activation for Sustainable Energy Systems. Small, 2017, 13, 1602010.	10.0	47
315	Integrating carbon nanotubes and lipid bilayer for biosensing. Biosensors and Bioelectronics, 2010, 25, 1834-1837.	10.1	46
316	Electrochemical deposition of Pt nanoparticles on carbon nanotube patterns for glucose detection. Analyst, The, 2010, 135, 1726.	3.5	46
317	Preparation, characterization, physical properties, and photoconducting behaviour of anthracene derivative nanowires. Nanoscale, 2011, 3, 4720.	5.6	46
318	Free-standing one-dimensional plasmonic nanostructures. Nanoscale, 2012, 4, 66-75.	5.6	46
319	Crucial role for oxygen functional groups in the oxygen reduction reaction electrocatalytic activity of nitrogen-doped carbons. Electrochimica Acta, 2018, 292, 942-950.	5.2	46
320	On-Chip Integration of a Covalent Organic Framework-Based Catalyst into a Miniaturized Zn–Air Battery with High Energy Density. ACS Energy Letters, 2021, 6, 2491-2498.	17.4	46
321	Redox-crosslinked graphene networks with enhanced electrochemical capacitance. Journal of Materials Chemistry A, 2014, 2, 12924.	10.3	44
322	Synthesis of 4H/fcc-Au@Metal Sulfide Core–Shell Nanoribbons. Journal of the American Chemical Society, 2015, 137, 10910-10913.	13.7	44
323	High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. Nanoscale, 2012, 4, 860-863.	5.6	43
324	Triangular Ag–Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction. Nanoscale, 2014, 6, 11738-11743.	5.6	43

#	Article	IF	CITATIONS
325	Synthesis and structure of two-dimensional transition-metal dichalcogenides. MRS Bulletin, 2015, 40, 566-576.	3.5	43
326	Controlled Growth of Peptide Nanoarrays on Si/SiO _{<i>x</i>} Substrates. Small, 2008, 4, 1324-1328.	10.0	42
327	Hybrid Flexible Resistive Random Access Memoryâ€Gated Transistor for Novel Nonvolatile Data Storage. Small, 2016, 12, 390-396.	10.0	42
328	Solution-Processed Nanocrystalline TiO ₂ Buffer Layer Used for Improving the Performance of Organic Photovoltaics. ACS Applied Materials & Interfaces, 2011, 3, 1063-1067.	8.0	40
329	Surface Modification of Smooth Poly(<scp>l</scp> -lactic acid) Films for Gelatin Immobilization. ACS Applied Materials & Interfaces, 2012, 4, 687-693.	8.0	38
330	A pyrazolate-bridged cyclic tetranuclear copper(II) complex: synthesis, crystal structure and magnetic properties. Journal of the Chemical Society Dalton Transactions, 1996, , 3799.	1.1	36
331	Force titration of amino group-terminated self-assembled monolayers of 4-aminothiophenol on gold using chemical force microscopy. Thin Solid Films, 1998, 327-329, 778-780.	1.8	36
332	Assembly of Graphene Oxide and Au0.7Ag0.3 Alloy Nanoparticles on SiO2: A New Raman Substrate with Ultrahigh Signal-to-Background Ratio. Journal of Physical Chemistry C, 2011, 115, 24080-24084.	3.1	36
333	Preservation of Lattice Orientation in Coalescing Imperfectly Aligned Gold Nanowires by a Zipper Mechanism. Angewandte Chemie - International Edition, 2013, 52, 6019-6023.	13.8	36
334	A carbon monoxide gas sensor using oxygen plasma modified carbon nanotubes. Nanotechnology, 2012, 23, 425502.	2.6	35
335	Nitrogen-doped carbon paper with 3D porous structure as a flexible free-standing anode for lithium-ion batteries. Scientific Reports, 2017, 7, 7769.	3.3	35
336	Battery-Everywhere Design Based on a Cathodeless Configuration with High Sustainability and Energy Density. ACS Energy Letters, 2021, 6, 1859-1868.	17.4	35
337	Theoretical Investigation on the Thermal Stability of Hollow Gold Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 20193-20197.	3.1	34
338	Controlled growth of single-walled carbon nanotubes on patterned substrates. Chemical Society Reviews, 2011, 40, 5221.	38.1	34
339	Hierarchical protonated titanate nanostructures for lithium-ion batteries. Nanoscale, 2011, 3, 4074.	5.6	33
340	Synthesis of Porous Amorphous FePO ₄ Nanotubes and Their Lithium Storage Properties. Chemistry - A European Journal, 2013, 19, 1568-1572.	3.3	33
341	Investigation of Thermally Induced Cellular Ablation and Heat Response Triggered by Planar MoS ₂ -Based Nanocomposite. Bioconjugate Chemistry, 2017, 28, 1059-1067.	3.6	33
342	Polyphenylene Dendrimerâ€Templated In Situ Construction of Inorganic–Organic Hybrid Riceâ€Shaped Architectures. Advanced Functional Materials, 2010, 20, 43-49.	14.9	32

#	Article	IF	CITATIONS
343	Nanohybridization of ferrocene clusters and reduced graphene oxides with enhanced lithium storage capability. Chemical Communications, 2011, 47, 10383.	4.1	32
344	Discrimination of Dendrimer Aggregates on Mica Based on Adhesion Force:Â A Pulsed Force Mode Atomic Force Microscopy Study. Langmuir, 2000, 16, 9294-9298.	3.5	31
345	Surface-Enhanced Raman Scattering of Ag–Au Nanodisk Heterodimers. Journal of Physical Chemistry C, 2012, 116, 10390-10395.	3.1	31
346	A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods. Nano Energy, 2016, 26, 1-6.	16.0	31
347	Synthesis of Porous, Hollow Metal MCO ₃ (M=Mn, Co, Ca) Microstructures and Adsorption Properties Thereof. Chemistry - A European Journal, 2014, 20, 421-425.	3.3	29
348	Singleâ€Layer Ternary Chalcogenide Nanosheet as a Fluorescenceâ€Based "Captureâ€Release―Biomolecular Nanosensor. Small, 2017, 13, 1601925.	10.0	29
349	Nitrogen and phosphorus co-doped carbon modified activated carbon as an efficient oxygen reduction catalyst for microbial fuel cells. RSC Advances, 2018, 8, 848-855.	3.6	29
350	Covalent Organic Frameworks for Efficient Energy Electrocatalysis: Rational Design and Progress. Advanced Energy and Sustainability Research, 2021, 2, 2000090.	5.8	29
351	Two-dimensional molybdenum disulphide nanosheet-covered metal nanoparticle array as a floating gate in multi-functional flash memories. Nanoscale, 2015, 7, 17496-17503.	5.6	28
352	Plasmon enhanced quantum dots fluorescence and energy conversion in water splitting using shell-isolated nanoparticles. Nano Energy, 2017, 42, 232-240.	16.0	28
353	Electrochemically "Writing―Graphene from Graphene Oxide. Small, 2014, 10, 3555-3559.	10.0	27
354	Hollow carbon nanosphere embedded with ultrafine Fe 3 O 4 nanoparticles as high performance Li-ion battery anode. Electrochimica Acta, 2016, 219, 356-362.	5.2	27
355	Enhancing the sensing specificity of a MoS ₂ nanosheet-based FRET aptasensor using a surface blocking strategy. Analyst, The, 2017, 142, 2570-2577.	3.5	27
356	Preparation of graphene-MoS2 hybrid aerogels as multifunctional sorbents for water remediation. Science China Materials, 2017, 60, 1102-1108.	6.3	27
357	Improving rate capacity and cycling stability of Si-anode lithium ion battery by using copper nanowire as conductive additive. Journal of Alloys and Compounds, 2020, 822, 153664.	5.5	26
358	Facile "Needleâ€5cratching―Method for Fast Catalyst Patterns Used for Largeâ€5cale Growth of Densely Aligned Singleâ€Walled Carbonâ€Nanotube Arrays. Small, 2009, 5, 2061-2065.	10.0	25
359	Induced Coiling Action: Exploring the Intrinsic Defects in Five-Fold Twinned Silver Nanowires. ACS Nano, 2012, 6, 6033-6039.	14.6	25
360	Zn-Ag-In-S quantum dot sensitized solar cells with enhanced efficiency by tuning defects. Journal of Colloid and Interface Science, 2019, 547, 267-274.	9.4	25

#	Article	IF	CITATIONS
361	High-Internal-Phase Pickering Emulsions Stabilized by Polymeric Dialdehyde Cellulose-Based Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 7371-7379.	6.7	25
362	Recyclable Hydrophilicâ	3.5	24
363	Nanoscaleâ€Controlled Enzymatic Degradation of Poly(<scp>L</scp> â€lactic acid) Films Using Dipâ€Pen Nanolithography. Small, 2011, 7, 226-229.	10.0	24
364	Oneâ€Pot Encapsulation of Luminescent Quantum Dots Synthesized in Aqueous Solution by Amphiphilic Polymers. Small, 2011, 7, 1456-1463.	10.0	24
365	Enhanced Optical Nonlinearity in Noncovalently Functionalized Amphiphilic Graphene Composites. ChemPlusChem, 2012, 77, 688-693.	2.8	24
366	Interfacial Synthesis of Cellulose-Derived Solvent-Responsive Nanoparticles via Schiff Base Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16595-16603.	6.7	24
367	Cold Nanotip Array for Ultrasensitive Electrochemical Sensing and Spectroscopic Monitoring. Small, 2013, 9, 2260-2265.	10.0	23
368	Amplified detection of femtomolar DNA based on a one-to-few recognition reaction between DNA–Au conjugate and target DNA. Nanoscale, 2014, 6, 3110.	5.6	23
369	Graphene Oxide Architectures Prepared by Molecular Combing on Hydrophilicâ€Hydrophobic Micropatterns. Small, 2014, 10, 2239-2244.	10.0	23
370	Probing Carboxylic Acid Groups in Replaced and Mixed Self-Assembled Monolayers by Individual Ionized Dendrimer Molecules:  An Atomic Force Microscopy Study. Langmuir, 2002, 18, 1801-1810.	3.5	22
371	In Situ Modification of Three-Dimensional Polyphenylene Dendrimer-Templated CuO Rice-Shaped Architectures with Electron Beam Irradiation. Journal of Physical Chemistry C, 2010, 114, 13465-13470.	3.1	22
372	Rational Synthesis of Triangular Au–Ag ₂ S Hybrid Nanoframes with Effective Photoresponses. Chemistry - A European Journal, 2014, 20, 2742-2745.	3.3	22
373	Specific functionalization of CTAB stabilized anisotropic gold nanoparticles with polypeptides for folding-mediated self-assembly. Journal of Materials Chemistry, 2012, 22, 20368.	6.7	21
374	Encapsulation of nanoscale metal oxides into an ultra-thin Ni matrix for superior Li-ion batteries: a versatile strategy. Nanoscale, 2014, 6, 12990-13000.	5.6	21
375	Recent Advances in Cantilever-Free Scanning Probe Lithography: High-Throughput, Space-Confined Synthesis of Nanostructures and Beyond. ACS Nano, 2017, 11, 4381-4386.	14.6	21
376	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2017, 56, 10486-10490.	13.8	21
377	Enhancing Loading Amount and Performance of Quantum-Dot-Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots from Bicomponent Solvents. Journal of Physical Chemistry Letters, 2019, 10, 229-237.	4.6	21
378	Dip-Pen Nanolithography-Generated Patterns Used as Gold Etch Resists: A Comparison Study of 16-Mercaptohexadecanioc Acid and 1-Octadecanethiol. Journal of Physical Chemistry C, 2009, 113, 4184-4187.	3.1	20

#	Article	IF	CITATIONS
379	Postchemistry of Organic Microrods: Thermopolymerization in Aqueous Solution. Chemistry - an Asian Journal, 2011, 6, 801-803.	3.3	20
380	Phosphineâ€Free, Lowâ€Temperature Synthesis of Tetrapodâ€Shaped CdS and Its Hybrid with Au Nanoparticles. Small, 2014, 10, 4727-4734.	10.0	20
381	Periodic AuAgâ€Ag ₂ S Heterostructured Nanowires. Small, 2014, 10, 479-482.	10.0	20
382	Synthesis of high-quality lanthanide oxybromides nanocrystals with single-source precursor for promising applications in cancer cells imaging. Applied Materials Today, 2015, 1, 20-26.	4.3	20
383	Robust, Easyâ€Cleaning Superhydrophobic/Superoleophilic Copper Meshes for Oil/Water Separation under Harsh Conditions. Advanced Materials Interfaces, 2019, 6, 1900158.	3.7	20
384	Asymmetric electron transport realized by decoupling between molecule and electrode. Physical Chemistry Chemical Physics, 2009, 11, 10323.	2.8	19
385	Adhesion, proliferation, and gene expression profile of human umbilical vein endothelial cells cultured on bilayered polyelectrolyte coatings composed of glycosaminoglycans. Biointerphases, 2010, 5, FA53-FA62.	1.6	17
386	Mesoscopic organic nanosheets peeled from stacked 2D covalent frameworks. Chemical Communications, 2011, 47, 7365.	4.1	17
387	Unleashing energy storage ability of aqueous battery electrolytes. Materials Futures, 2022, 1, 022001.	8.4	17
388	Immobilization of Recombinant Vault Nanoparticles on Solid Substrates. ACS Nano, 2010, 4, 1417-1424.	14.6	16
389	Single-layer graphene oxide sheet: a novel substrate for dip-pen nanolithography. Chemical Communications, 2011, 47, 10070.	4.1	16
390	TaS2 nanosheet-based room-temperature dosage meter for nitric oxide. APL Materials, 2014, 2, .	5.1	16
391	Atomic Force Microscopy Evidence of Citrate Displacement by 4-Mercaptopyridine on Gold in Aqueous Solutionâ€. Langmuir, 2000, 16, 4554-4557.	3.5	15
392	Semiconductor Nanocomposites of Emissive Flexible Random Copolymers and CdTe Nanocrystals: Preparation, Characterization, and Optoelectronic Properties. Macromolecular Chemistry and Physics, 2007, 208, 2007-2017.	2.2	15
393	OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps. Nano Letters, 2012, 12, 4734-4737.	9.1	15
394	Vapor–Liquid–Solid Growth of Endotaxial Semiconductor Nanowires. Nano Letters, 2012, 12, 5565-5570.	9.1	14
395	Solvothermal-Induced Conversion of One-Dimensional Multilayer Nanotubes to Two-Dimensional Hydrophilic VO _{<i>x</i>} Nanosheets: Synthesis and Water Treatment Application. ACS Applied Materials & Interfaces, 2013, 5, 10389-10394.	8.0	14
396	Molecular crystals on two-dimensional van der Waals substrates. Science China Materials, 2015, 58, 5-8.	6.3	14

#	Article	IF	CITATIONS
397	Efficient Flexible Counter Electrode Based on Modified Graphite Paper and in Situ Grown Copper Sulfide for Quantum Dot Sensitized Solar Cells. ACS Applied Energy Materials, 2018, 1, 1355-1363.	5.1	13
398	Generation of Dual Patterns of Metal Oxide Nanomaterials Based on Seed-Mediated Selective Growth. Langmuir, 2010, 26, 4616-4619.	3.5	12
399	Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis. Integrative Biology (United Kingdom), 2010, 2, 250.	1.3	12
400	Scalable Solid-Template Reduction for Designed Reduced Graphene Oxide Architectures. ACS Applied Materials & Interfaces, 2013, 5, 7676-7681.	8.0	12
401	Substrate-bound growth of Au–Pd diblock nanowire and hybrid nanorod–plate. Nanoscale, 2015, 7, 8115-8121.	5.6	12
402	Graphene Oxide Scroll Meshes Prepared by Molecular Combing for Transparent and Flexible Electrodes. Advanced Materials Technologies, 2017, 2, 1600231.	5.8	12
403	Levelling the playing field: screening for synergistic effects in coalesced bimetallic nanoparticles. Nanoscale, 2016, 8, 3447-3453.	5.6	11
404	Surfaceâ€Induced Synthesis and Selfâ€Assembly of Metal Suprastructures. Small, 2010, 6, 2708-2715.	10.0	10
405	Synthesis, Structure, Physical Properties, and Displacement Current Measurement of an n-Type Organic Semiconductor: 2:3,5:6-Bis(1,1-dicyanoethylene-2,2-dithiolate)-quinone. Australian Journal of Chemistry, 2012, 65, 1674.	0.9	10
406	Facile growth of a single-crystal pattern: a case study of HKUST-1. Chemical Communications, 2012, 48, 11901.	4.1	10
407	Encapsulation of a living bioelectrode by a hydrogel for bioelectrochemical systems in alkaline media. Journal of Materials Chemistry B, 2015, 3, 4641-4646.	5.8	10
408	Pulsed-Force-Mode AFM Studies of Polyphenylene Dendrimers on Self-Assembled Monolayers. Journal of Physical Chemistry C, 2007, 111, 8142-8144.	3.1	9
409	Facile "Scratching―Method with Common Metal Objects To Generate Large-Scale Catalyst Patterns Used for Growth of Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2009, 1, 1873-1877.	8.0	8
410	A rectifying diode with hysteresis effect from an electroactive hybrid of carbazole-functionalized polystyrene with CdTe nanocrystals via electrostatic interaction. Science China Chemistry, 2010, 53, 2324-2328.	8.2	7
411	Spirals and helices by asymmetric active surface growth. Nanoscale, 2017, 9, 18352-18358.	5.6	7
412	Selfâ€Assembly of Surfaceâ€Acylated Cellulose Nanowhiskers and Graphene Oxide for Multiresponsive Janusâ€Like Films with Timeâ€Dependent Dryâ€State Structures. Small, 2020, 16, e2004922.	10.0	7
413	Microstructure array on Si and SiOx generated by micro-contact printing, wet chemical etching and reactive ion etching. Applied Surface Science, 2006, 253, 1960-1963.	6.1	6
414	Two-dimensional synthetic templates. National Science Review, 2015, 2, 19-21.	9.5	6

#	Article	IF	CITATIONS
415	Preparation and Applications of Two-Dimensional Crystals Based on Organic or Metal-Organic Materials. Acta Chimica Sinica, 2015, 73, 913.	1.4	6
416	The 6-(10-Mercaptodecoxyl)quinoline Self-Assembled Monolayer on Gold: Spectroscopy and Wettability Investigation. Journal of Colloid and Interface Science, 1999, 214, 46-52.	9.4	4
417	CADMIUM TELLURIDE NANOCRYSTALS: SYNTHESIS, GROWTH MODE AND EFFECT OF REACTION TEMPERATURE ON CRYSTAL STRUCTURES. Nano, 2008, 03, 109-115.	1.0	2
418	Bioinspired self-cleaning surface with microflower-like structures constructed by electrochemically corrosion mediated self-assembly. CrystEngComm, 2022, 24, 1085-1093.	2.6	2
419	Celebrating 50 Years of Chemistry in Singapore. ChemPlusChem, 2015, 80, 1192-1194.	2.8	0