
Henry J Leese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11552965/publications.pdf Version: 2024-02-01

HENDVILEESE

#	Article	IF	CITATIONS
1	Non-invasive amino acid turnover predicts human embryo developmental capacity. Human Reproduction, 2002, 17, 999-1005.	0.4	357
2	Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays, 2002, 24, 845-849.	1.2	343
3	Oxygen consumption and energy metabolism of the early mouse embryo. Molecular Reproduction and Development, 1996, 44, 476-485.	1.0	307
4	Metabolism of the preimplantation embryo: 40 years on. Reproduction, 2012, 143, 417-427.	1.1	279
5	Metabolism of the viable mammalian embryo: quietness revisited. Molecular Human Reproduction, 2008, 14, 667-672.	1.3	228
6	Metabolic control during preimplantation mammalian development. Human Reproduction Update, 1995, 1, 63-72.	5.2	219
7	Elevated Non-Esterified Fatty Acid Concentrations during Bovine Oocyte Maturation Compromise Early Embryo Physiology. PLoS ONE, 2011, 6, e23183.	1.1	211
8	Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology, 2005, 64, 992-1006.	0.9	195
9	Protection against reactive oxygen species during mouse preimplantation embryo development: Role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Molecular Reproduction and Development, 2001, 59, 44-53.	1.0	188
10	A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Molecular Reproduction and Development, 2006, 73, 1195-1201.	1.0	184
11	Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. The Journal of Experimental Zoology, 1987, 242, 103-105.	1.4	181
12	Human embryos from overweight and obese women display phenotypic and metabolic abnormalities. Human Reproduction, 2015, 30, 122-132.	0.4	171
13	Selection criteria for human embryo transfer: A comparison of pyruvate uptake and morphology. Journal of Assisted Reproduction and Genetics, 1993, 10, 21-30.	1.2	168
14	Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reproduction, Fertility and Development, 2008, 20, 1.	0.1	158
15	Production of pyruvate by isolated mouse cumulus cells. The Journal of Experimental Zoology, 1985, 234, 231-236.	1.4	151
16	The quiet embryo hypothesis: Molecular characteristics favoring viability. Molecular Reproduction and Development, 2007, 74, 1345-1353.	1.0	139
17	Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Molecular Reproduction and Development, 2007, 74, 445-454.	1.0	137
18	Embryo viability and metabolism: obeying the quiet rules. Human Reproduction, 2007, 22, 3047-3050.	0.4	128

#	Article	IF	CITATIONS
19	Meiotic Induction in Cumulus Cell-Enclosed Mouse Oocytes: Involvement of the Pentose Phosphate Pathway1. Biology of Reproduction, 1998, 58, 1084-1094.	1.2	124
20	The effect of paracrine/autocrine interactions on the in vitro culture of bovine preimplantation embryos. Reproduction, 2006, 131, 269-277.	1.1	107
21	Role of glucose in mouse preimplantation embryo development. Molecular Reproduction and Development, 1995, 40, 436-443.	1.0	104
22	Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Molecular Human Reproduction, 2010, 16, 557-569.	1.3	99
23	Early human embryo metabolism. BioEssays, 1993, 15, 259-264.	1.2	96
24	Metabolic Induction and Early Responses of Mouse Blastocyst Developmental Programming following Maternal Low Protein Diet Affecting Life-Long Health. PLoS ONE, 2012, 7, e52791.	1.1	94
25	DNA damage and metabolic activity in the preimplantation embryo. Human Reproduction, 2008, 24, 81-91.	0.4	93
26	Pyruvate and oxygen consumption throughout the growth and development of murine oocytes. Molecular Reproduction and Development, 2009, 76, 231-238.	1.0	92
27	Energy metabolism of the trophectoderm and inner cell mass of the mouse blastocyst. The Journal of Experimental Zoology, 1993, 267, 337-343.	1.4	87
28	Carbohydrate metabolism by murine ovarian follicles and oocytes grown in vitro. Reproduction, 2007, 134, 415-424.	1.1	86
29	Assessing embryo viability by measurement of amino acid turnover. Reproductive BioMedicine Online, 2008, 17, 486-496.	1.1	83
30	Metabolism and developmental competence of the preimplantation embryo. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2004, 115, S92-S96.	0.5	82
31	Development of porcine embryos in vivo and in vitro; evidence for embryo â€~cross talk' in vitro. Developmental Biology, 2005, 284, 62-71.	0.9	79
32	Fluctuations in bovine ovarian follicular fluid composition throughout the oestrous cycle. Reproduction, 2005, 129, 219-228.	1.1	78
33	Glucose utilization during gonadotropin-induced meiotic maturation in cumulus cell-enclosed mouse oocytes. Molecular Reproduction and Development, 1996, 44, 121-131.	1.0	76
34	Pyruvate utilization by mouse oocytes is influenced by meiotic status and the cumulus oophorus. Molecular Reproduction and Development, 2002, 62, 113-123.	1.0	73
35	What does an embryo need?. Human Fertility, 2003, 6, 180-185.	0.7	67
36	Metabolism of human embryos following cryopreservation: Implications for the safety and selection of embryos for transfer in clinical IVF. Human Reproduction, 2007, 22, 829-835.	0.4	67

#	Article	IF	CITATIONS
37	Biological optimization, the Goldilocks principle, and how much is <i>lagom</i> in the preimplantation embryo. Molecular Reproduction and Development, 2016, 83, 748-754.	1.0	66
38	Ammonium exposure and pyruvate affect the amino acid metabolism of bovine blastocysts in vitro. Reproduction, 2004, 127, 131-140.	1.1	64
39	Metabolism of Pyruvate by the Early Human Embryo1. Biology of Reproduction, 1998, 58, 1054-1056.	1.2	63
40	Amino acid depletion and appearance during porcine preimplantation embryo development in vitro. Reproduction, 2005, 130, 655-668.	1.1	60
41	Na+, K+, ATPase activity in the human and bovine preimplantation embryo. Developmental Biology, 2003, 263, 360-366.	0.9	59
42	Prediction of Porcine Blastocyst Formation Using Morphological, Kinetic, and Amino Acid Depletion and Appearance Criteria Determined During the Early Cleavage of In Vitro-Produced Embryos1. Biology of Reproduction, 2007, 77, 765-779.	1.2	59
43	Gene expression regulating epithelial intercellular junction biogenesis during human blastocyst development in vitro. Molecular Human Reproduction, 2003, 9, 245-252.	1.3	55
44	Physiological Changes in Oocyte-Cumulus Cell Complexes from Diabetic Mice that Potentially Influence Meiotic Regulation1. Biology of Reproduction, 2003, 69, 761-770.	1.2	55
45	Amino acid metabolism of preimplantation bovine embryos cultured with bovine serum albumin or polyvinyl alcohol. Theriogenology, 2004, 61, 561-572.	0.9	55
46	A Simple Approach for COnsumption and RElease (CORE) Analysis of Metabolic Activity in Single Mammalian Embryos. PLoS ONE, 2013, 8, e67834.	1.1	55
47	Adenosine Triphosphate Production by Bovine Spermatozoa and Its Relationship to Semen Fertilizing Ability. Journal of Andrology, 2008, 29, 449-458.	2.0	52
48	Amino Acid Turnover by Bovine Oocytes Provides an Index of Oocyte Developmental Competence In Vitro1. Biology of Reproduction, 2012, 86, 165, 1-12.	1.2	52
49	Effects of metabolic inhibitors on mouse preimplantation embryo development and the energy metabolism of isolated inner cell masses. Molecular Reproduction and Development, 1996, 43, 323-330.	1.0	43
50	Human embryo culture: back to nature. Journal of Assisted Reproduction and Genetics, 1998, 15, 466-468.	1.2	39
51	Expression of connexins in human preimplantation embryos in vitro. Reproductive Biology and Endocrinology, 2004, 2, 25.	1.4	39
52	Occludin TM4-: an isoform of the tight junction protein present in primates lacking the fourth transmembrane domain. Journal of Cell Science, 2002, 115, 3171-3180.	1.2	38
53	Application of extracellular flux analysis for determining mitochondrial function in mammalian oocytes and early embryos. Scientific Reports, 2019, 9, 16778.	1.6	36
54	Glucose-free medium in human in vitro fertilization and embryo transfer: a large-scale, prospective, randomized clinical trial. Fertility and Sterility, 1999, 72, 229-232.	0.5	35

#	Article	IF	CITATIONS
55	Metabolic heterogeneity during preimplantation development: the missing link?. Human Reproduction Update, 2014, 20, 632-640.	5.2	35
56	Role of developmental factors in the switch from pyruvate to glucose as the major exogenous energy substrate in the preimplantation mouse embryo. Reproduction, Fertility and Development, 1999, 11, 425.	0.1	34
57	Can embryo metabolism be used for selecting bovine embryos before transfer?. Reproduction, Nutrition, Development, 1999, 39, 523-533.	1.9	30
58	History of oocyte and embryo metabolism. Reproduction, Fertility and Development, 2015, 27, 567.	0.1	30
59	Lactate formation by rat small intestine in vitro. Biochimica Et Biophysica Acta - General Subjects, 1975, 404, 40-48.	1.1	25
60	Non-invasive methods for assessing embryos. Human Reproduction, 1987, 2, 435-438.	0.4	22
61	Effect of Purinergic Stimulation on Intracellular Calcium Concentration and Transepithelial Potential Difference in Cultured Bovine Oviduct Cells1. Biology of Reproduction, 1995, 52, 1244-1249.	1.2	21
62	Activity of hexokinase in mouse oocytes and preimplantation embryos. Biochemical Society Transactions, 1989, 17, 546-547.	1.6	20
63	The role of exogenous energy substrates in blastocoele fluid accumulation in the rat. Zygote, 1994, 2, 69-77.	0.5	20
64	Amino Acids and the Early Mammalian Embryo: Origin, Fate, Function and Life-Long Legacy. International Journal of Environmental Research and Public Health, 2021, 18, 9874.	1.2	20
65	Human embryos developing in vitro are susceptible to impaired epithelial junction biogenesis correlating with abnormal metabolic activity. Human Reproduction, 2007, 22, 2214-2224.	0.4	19
66	Lamins A and C are present in the nuclei of early porcine embryos, with lamin A being distributed in large intranuclear foci. Chromosome Research, 2007, 15, 163-174.	1.0	17
67	The Quiet Embryo Hypothesis: 20 years on. Frontiers in Physiology, 2022, 13, .	1.3	17
68	Differential response of cumulus cell-enclosed and denuded mouse oocytes in a meiotic induction model system. Molecular Reproduction and Development, 2006, 73, 379-389.	1.0	15
69	Modelling aspects of oviduct fluid formation in vitro. Reproduction, 2017, 153, 23-33.	1.1	15
70	Expression and localization of creatine kinase in the preimplantation embryo. Molecular Reproduction and Development, 2013, 80, 185-192.	1.0	14
71	Regulation of the transition from research to clinical practice in human assisted conception. Human Fertility, 2001, 4, 172-176.	0.7	13
72	Going to extremes: the Goldilocks/Lagom principle and data distribution. BMJ Open, 2019, 9, e027767.	0.8	9

#	Article	IF	CITATIONS
73	Expression of an antigen associated with basal bodies of human ciliated epithelial cells. The Histochemical Journal, 1999, 31, 39-43.	0.6	8
74	Oxygen consumption and energy metabolism of the early mouse embryo. , 1996, 44, 476.		8
75	Expression and function of transient receptor potential channels in the female bovine reproductive tract. Theriogenology, 2016, 86, 551-561.	0.9	7
76	The Effect of Theophylline on Glucose and Fluid Transport across the Rat Jejunum. Biochemical Society Transactions, 1976, 4, 272-274.	1.6	6
77	Metabolism of the Early Embryo: Energy Production and Utilization. , 2001, , 61-68.		6
78	Energy Metabolism in Preimplantation Development. , 1993, , 73-82.		6
79	Rewards and risks of human embryo creation: a personal view. Reproduction, Fertility and Development, 2005, 17, 387.	0.1	5
80	Glucose concentration during equine in vitro maturation alters mitochondrial function. Reproduction, 2020, 160, 227-237.	1.1	5
81	The effects of phenformin on the transport and metabolism of sugars by the rat small intestine. Biochemical Pharmacology, 1984, 33, 771-777.	2.0	4
82	Effective nutrition from conception to adulthood. Human Fertility, 2014, 17, 252-256.	0.7	4
83	Glucose Accumulation by Rings of Small Intestine from Normal and Schistosome-Infected Mice. Biochemical Society Transactions, 1976, 4, 274-277.	1.6	2
84	Studies on the Mode of Action of Phenformin in the Rat Small Intestine. Biochemical Society Transactions, 1979, 7, 152-154.	1.6	1
85	Female tract environment and its relationship to ART media composition. , 0, , 21-29.		1
86	Amino Acid Turnover as a Biomarker of Embryo Viability. , 2012, , 431-438.		1
87	Commentary: Training and accreditation in the provision of infertility services. Human Fertility, 2003, 6, S28-S29.	0.7	Ο
88	Amino Acid Turnover as a Biomarker of Embryo Viability. , 2019, , 549-556.		0
89	Amino Acid Turnover as a Biomarker of Embryo Viability. , 2013, , 353-365.		0
90	The Female Reproductive Tract and Early Embryo Development. , 0, , 99-108.		0

6