Anderson Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1155210/publications.pdf

Version: 2024-02-01

132 3,186 31 48 g-index

137 137 137 137 3029

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Comment on "Prediction of lattice constant in cubic perovskites― Journal of Physics and Chemistry of Solids, 2007, 68, 1617-1622.	1.9	213
2	Effect of Nonstoichiometry on the Structure and Microwave Dielectric Properties of Ba(Mg0.33Ta0.67)O3. Chemistry of Materials, 2005, 17, 142-151.	3.2	113
3	Synthesis and Crystal Structure of Lanthanide Orthoniobates Studied by Vibrational Spectroscopy. Chemistry of Materials, 2010, 22, 2668-2674.	3.2	95
4	Pyrite oxidation in alkaline solutions: nature of the product layer. International Journal of Mineral Processing, 2003, 72, 373-386.	2.6	90
5	Chemical Substitution in Ba(RE1/2Nb1/2)O3 (RE = La, Nd, Sm, Gd, Tb, and Y) Microwave Ceramics and Its Influence on the Crystal Structure and Phonon Modes. Chemistry of Materials, 2006, 18, 214-220.	3.2	88
6	Raman-spectroscopic evaluation of the long-range order in Ba(B1/3′B2/3″)O3 ceramics. Applied Physics Letters, 2001, 78, 428-430.	1.5	79
7	Vibrational Studies and Microwave Dielectric Properties of A-Site-Substituted Tellurium-Based Double Perovskites. Chemistry of Materials, 2008, 20, 4347-4355.	3.2	73
8	Electroceramic Materials of Tailored Phase and Morphology by Hydrothermal Technology. Chemistry of Materials, 2003, 15, 1344-1352.	3.2	72
9	Structure and Microwave Dielectric Properties of Sr2+nCe2Ti5+nO15+3n (n ≤0) Homologous Series. Chemistry of Materials, 2007, 19, 4077-4082.	3.2	71
10	Raman scattering and X-ray diffraction investigations on hydrothermal barium magnesium niobate ceramics. Journal of the European Ceramic Society, 2001, 21, 2739-2744.	2.8	61
11	Raman Scattering and Fourier Transform Infrared Spectroscopy of Me ₆ Al ₂ O (Me = Mg, Ni, Zn,) To the State of Characteristic County (County County Coun	ј ЕТ <u>Q</u> q1 1 _	, 0 <u>.7</u> 84314 rg
12	Physical Chemistry C, 2009, 113, 13358-13368. Optical Phonon Modes and Dielectric Behavior of Sr _{1–3<i>x</i>/2} Ce _{<i>x</i>/sub>TiO₃ Microwave Ceramics. Chemistry of Materials, 2007, 19, 6548-6554.}	3.2	55
13	Chemical, mechanical and dielectric properties after sintering of hydrothermal nickel–zinc ferrites. Materials Letters, 1999, 39, 69-76.	1.3	53
14	Microstructural dependence of the magnetic properties of sintered NiZn ferrites from hydrothermal powders. Journal of Magnetism and Magnetic Materials, 1997, 172, L9-L14.	1.0	51
15	In situ thermal and structural characterization of bioactive calcium phosphate glass ceramics containing TiO2 and MgO oxides: High temperature – XRD studies. Journal of Non-Crystalline Solids, 2005, 351, 810-817.	1.5	50
16	Raman Spectroscopy of (Ba1-xSrx)(Mg1/3Nb2/3)O3Solid Solutions from Microwave-Hydrothermal Powders. Chemistry of Materials, 2007, 19, 2335-2341.	3.2	50
17	Raman Scattering and Infrared Spectroscopy of Chemically Substituted $Sr < sub > 2 < sub > LnTaO < sub > 6 < sub > (Ln = Lanthanides, Y, and In) Double Perovskites. Chemistry of Materials, 2008, 20, 5253-5259.$	3.2	49
18	Far-infrared spectroscopy in ordered and disordered BaMg1/3Nb2/3O3 microwave ceramics. Journal of Applied Physics, 2003, 94, 3414-3421.	1.1	48

#	Article	IF	CITATIONS
19	Layered double hydroxides for remediation of industrial wastewater containing manganese and fluoride. Journal of Cleaner Production, 2018, 171, 275-284.	4.6	47
20	Influence of the processing conditions and chemical environment on the crystal structures and phonon modes of lanthanide orthotantalates. Dalton Transactions, 2011, 40, 9454.	1.6	46
21	Adsorption of organic and inorganic arsenic from aqueous solutions using MgAl-LDH with incorporated nitroprusside. Journal of Colloid and Interface Science, 2020, 575, 194-205.	5.0	46
22	Vibrational Spectroscopy of Ca ₂ LnTaO ₆ (Ln = lanthanides, Y, and In) and Ca ₂ InNbO ₆ Double Perovskites. Chemistry of Materials, 2011, 23, 14-20.	3.2	42
23	Use of calcined layered double hydroxides for the removal of color and organic matter from textile effluents: kinetic, equilibrium and recycling studies. Brazilian Journal of Chemical Engineering, 2014, 31, 19-26.	0.7	39
24	Atomic force and magnetic force microscopies applied to duplex stainless steels. Applied Surface Science, 2000, 161, 109-114.	3.1	38
25	Production of nanostructured magnetic composites based on FeO nuclei coated with carbon nanofibers and nanotubes from red mud waste and ethanol. Applied Catalysis B: Environmental, 2011, 105, 163-170.	10.8	37
26	Raman-spectroscopic investigation of and perovskites. Journal of Solid State Chemistry, 2007, 180, 2143-2148.	1.4	36
27	Vibrational spectroscopic study of Sr ₂ ZnTeO ₆ double perovskites. Journal of Raman Spectroscopy, 2010, 41, 702-706.	1.2	35
28	Influence of the Matrix on the Red Emission in Europium Self-Activated Orthoceramics. Journal of Physical Chemistry C, 2015, 119, 17825-17835.	1.5	35
29	Synchrotron X-ray diffraction and Raman spectroscopy of Ln3NbO7 (Ln=La, Pr, Nd, Sm-Lu) ceramics obtained by molten-salt synthesis. Journal of Solid State Chemistry, 2014, 209, 63-68.	1.4	34
30	Raman-spectroscopic investigations on the crystal structure and phonon modes of Ba(RE1/2Ta1/2)O3 microwave ceramics. Journal of the European Ceramic Society, 2007, 27, 2803-2809.	2.8	33
31	Microwave-hydrothermal synthesis of nanostructured Na-birnessites and phase transformation by arsenic(III) oxidation. Materials Research Bulletin, 2008, 43, 1528-1538.	2.7	33
32	Hydrothermal synthesis and sintering of nickel and manganese-zinc ferrites. Journal of Materials Research, 1997, 12, 3278-3285.	1.2	32
33	Low-loss Ca5â^'xSrxA2TiO12[A=Nb,Ta] ceramics: Microwave dielectric properties and vibrational spectroscopic analysis. Journal of Applied Physics, 2005, 97, 104108.	1.1	31
34	Ce1â^'xSmxO1.9â^'Î^ nanoparticles obtained by microwave-assisted hydrothermal processing: an efficient application for catalytic oxidation of \hat{l}_{\pm} -bisabolol. Catalysis Science and Technology, 2014, 4, 814.	2.1	31
35	Solid-State Sintering of Hydrothermal Powders: Densification and Grain Growth Kinetics of Nickel–Zinc Ferrites. Materials Research Bulletin, 1998, 33, 475-486.	2.7	29
36	Conductivity behavior of <i>n</i> -type semiconducting ferrites from hydrothermal powders. Journal of Materials Research, 1998, 13, 2190-2194.	1.2	29

#	Article	IF	Citations
37	Magnetic amphiphilic composites based on carbon nanotubes and nanofibers grown on an inorganic matrix: effect on water-oil interfaces. Journal of the Brazilian Chemical Society, 2010, 21, 2184-2188.	0.6	29
38	Facile preparation of carbon coated magnetic Fe3O4 particles by a combined reduction/CVD process. Materials Research Bulletin, 2011, 46, 748-754.	2.7	28
39	Microwave-hydrothermal preparation of alkaline-earth-metal tungstates. Journal of Materials Science, 2010, 45, 6083-6093.	1.7	27
40	Electrocatalytic performance of different cobalt molybdate structures for water oxidation in alkaline media. CrystEngComm, 2018, 20, 5592-5601.	1.3	27
41	Sintering studies of hydrothermal NiZn ferrites. Journal of Physics and Chemistry of Solids, 1997, 58, 543-549.	1.9	26
42	Effect of the processing parameters on the crystalline structure of lanthanide orthotantalates. Materials Research, 2014, 17, 167-173.	0.6	26
43	Polarized Micro-Raman Scattering of CaNb ₂ O ₆ Single Crystal Fibers Obtained by Laser Heated Pedestal Growth. Crystal Growth and Design, 2010, 10, 1569-1573.	1.4	25
44	Optical properties of undoped NdTaO 4, ErTaO 4 and YbTaO 4 ceramics. Journal of Luminescence, 2016, 179, 146-153.	1.5	25
45	Thermodynamic calculations and modeling of the hydrothermal synthesis of nickel tungstates. Journal of the European Ceramic Society, 2001, 21, 2061-2065.	2.8	24
46	Polarized Micro-Raman Spectroscopy of Ba(Mg1/3Nb2/3)O3 Single Crystal Fibers. Crystal Growth and Design, 2005, 5, 1457-1462.	1.4	24
47	Calcined Layered Double Hydroxides for Decolorization of Azo Dye Solutions: Equilibrium, Kinetics, and Recycling Studies. Environmental Engineering Science, 2012, 29, 685-692.	0.8	24
48	Monitoring the Structural and Vibrational Properties in RE-Doped SrTiO ₃ Ceramic Powders. Journal of Physical Chemistry C, 2016, 120, 16960-16968.	1.5	24
49	Carbon nanostructures-modified expanded vermiculites produced by chemical vapor deposition from ethanol. Applied Clay Science, 2011, 54, 15-19.	2.6	23
50	Lanthanide Orthoantimonate Light Emitters: Structural, Vibrational, and Optical Properties. Chemistry of Materials, 2014, 26, 6351-6360.	3.2	23
51	Raman scattering study of the high temperature phase transitions of NaTaO3. Journal of the European Ceramic Society, 2007, 27, 3683-3686.	2.8	22
52	Simultaneous production of impurity-free water and magnetite from steel pickling liquors by microwave-hydrothermal processing. Hydrometallurgy, 2006, 84, 37-42.	1.8	21
53	Crystal structure and phonon modes of ilmeniteâ€type NaBiO ₃ investigated by Raman and infrared spectroscopies. Journal of Raman Spectroscopy, 2010, 41, 698-701.	1.2	21
54	Synthesis and properties of A6B2(OH)16Cl2·4H2O (A = Mg, Ni, Zn, Co, Mn and B = Al, Fe) materials for environmental applications. Materials Research Bulletin, 2011, 46, 1346-1351.	2.7	21

#	Article	IF	CITATIONS
55	Magnetic composites based on metallic nickel and molybdenum carbide: A potential material for pollutants removal. Journal of Hazardous Materials, 2012, 241-242, 73-81.	6.5	21
56	Raman and infrared spectroscopic investigations on the crystal structure and phonon modes of LaYbO3ceramics. Journal of Physics Condensed Matter, 2005, 17, 2775-2781.	0.7	20
57	Disorderâ€induced symmetry lowering in Ba(Y _{1/2} Nb _{1/2})O ₃ ceramics probed by Raman spectroscopy. Journal of Raman Spectroscopy, 2008, 39, 1805-1810.	1.2	20
58	Crystal structure of fluorite-related Ln3SbO7 (Ln=La–Dy) ceramics studied by synchrotron X-ray diffraction and Raman scattering. Journal of Solid State Chemistry, 2013, 203, 326-332.	1.4	20
59	Microstructural evolution of fast-fired nickel–zinc ferrites from hydrothermal nanopowders. Materials Research Bulletin, 2000, 35, 1439-1446.	2.7	19
60	Infrared Spectroscopic Investigations in Ordered Barium Magnesium Niobate Ceramics. Journal of the American Ceramic Society, 2003, 86, 1985-1987.	1.9	19
61	Microwave and infrared dielectric properties of Sr _{1â^'3<i>x</i> 2} Ce _{<i>x</i> forced by the content of the cont}	1.3	19
62	Incipient crystallization of transition-metal tungstates under microwaves probed by Raman scattering and transmission electron microscopy. Journal of Nanoparticle Research, 2011, 13, 5927-5933.	0.8	19
63	Investigation of Polymorphism and Vibrational Properties of MnMoO ₄ Microcrystals Prepared by a Hydrothermal Process. Crystal Growth and Design, 2018, 18, 2474-2485.	1.4	19
64	Analysis of nitrogen adsorption-desorption isotherms for the estimation of pore-network dimensions and structure of ferroelectric powders. Ferroelectrics, 2000, 241, 9-16.	0.3	17
65	Structure and Microwave Dielectric Properties of Low Firing <scp><scp>Bi</scp><scp><scp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xscp><scp>Xs</scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp>	:s ub >3 <td>suև7 < scp > േ</td>	su և7 < scp > േ
66	Title is missing!. Journal of Materials Science, 1997, 32, 4715-4718.	1.7	16
67	Scale morphologies and compositions of an iron-manganese-aluminum-silicon alloy oxidated at high temperatures. Corrosion Science, 1998, 40, 271-280.	3.0	16
68	Micro Far-Infrared Reflectivity of CaNb ₂ O ₆ Single Crystal Fibers Grown by the Laser-Heated Pedestal Growth Technique. Crystal Growth and Design, 2011, 11, 3472-3478.	1.4	16
69	Gold, palladium and gold–palladium supported on silica catalysts prepared by sol–gel method: synthesis, characterization and catalytic behavior in the ethanol steam reforming. Journal of Sol-Gel Science and Technology, 2013, 67, 273-281.	1.1	16
70	Influence of crystalline structure on the luminescence properties of terbium orthotantalates. Journal of Luminescence, 2013, 138, 133-137.	1.5	16
71	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">B</mml:mi><mml:msub><mml:mi mathvariant="normal">a</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi>ZnTe</mml:mi><mml:msub>< mathvariant="normal">O<mml:mn>6</mml:mn></mml:msub></mml:mrow>	mml:mi	16
72	double perovskite. Physical Review Materials, 2018, 2, Micro far-infrared dielectric response of lanthanide orthotantalates for applications in microwave circuitry. Journal of Alloys and Compounds, 2017, 693, 1243-1249.	2.8	15

#	Article	IF	CITATIONS
73	Feasible and Clean Solid-Phase Synthesis of LiNbO ₃ by Microwave-Induced Combustion and Its Application as Catalyst for Low-Temperature Aniline Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 1680-1691.	3.2	15
74	Influence of europium doping on the structural phase-transition temperature of $\hat{l}^2\hat{a}^2$ and \hat{l}^2	2.7	15
75	Synthesis and characterisation of La0.4Ba0.6Ti0.6RE0.4O3 (where RE=Y, Yb) ceramics. Journal of the European Ceramic Society, 2006, 26, 1947-1951.	2.8	14
76	Vibrational Spectroscopy and Electronâ^'Phonon Interactions in Microwave-Hydrothermal Synthesized Ba(Mn _{1/3} Nb _{2/3})O ₃ Complex Perovskites. Journal of Physical Chemistry B, 2009, 113, 9749-9755.	1.2	14
77	Raman and Infrared Phonon Features in a Designed Cubic Polymorph of CaTa ₂ O ₆ . Crystal Growth and Design, 2011, 11, 5567-5573.	1.4	14
78	Synthesis and \hat{l}_4 -Raman scattering of Ruddlesden-Popper ceramics Sr3Ti2O7, SrLa2Al2O7 and Sr2LaAlTiO7. Journal of Alloys and Compounds, 2017, 725, 77-83.	2.8	13
79	Polymorphism and Optical–Vibration Properties of MnV ₂ O(sub>O(sub>6· <i>n</i> lrradiation. Crystal Growth and Design, 2019, 19, 3233-3243.	1.4	13
80	Polarizationâ€resolved Raman modes of monoclinic SrAl ₂ O ₄ ceramics. Journal of Raman Spectroscopy, 2018, 49, 1514-1521.	1.2	12
81	Hydrothermal synthesis and sintering of electroceramics. Journal of the European Ceramic Society, 1999, 19, 1027-1031.	2.8	11
82	Polarized micro-Raman spectroscopy of oriented A($B\hat{a}\in^21/3B\hat{a}\in^32/3$)O3 powders and microwave ceramics. Journal of the European Ceramic Society, 2005, 25, 2843-2847.	2.8	11
83	Production of Sr-deficient bismuth tantalates from microwave–hydrothermal derived precursors: Structural and dielectric properties. Journal of Physics and Chemistry of Solids, 2007, 68, 645-649.	1.9	11
84	Thermodynamic Studies as Predictive Tools ofÂtheÂBehavior of Electroceramics Under Different Hydrothermal Environments. Journal of Solution Chemistry, 2009, 38, 843-856.	0.6	11
85	Raman and infrared spectroscopic studies of LaTaTiO6 polymorphs. Journal of Alloys and Compounds, 2017, 710, 608-615.	2.8	11
86	Hydrothermal synthesis and polarized micro-Raman spectroscopy of copper molybdates. Ceramics International, 2018, 44, 12426-12434.	2.3	11
87	Nanometric powders and sintered ceramics studied by atomic force microscopy. Journal of Materials Research, 1998, 13, 223-227.	1.2	10
88	Optical phonon modes and infrared dielectric properties of monoclinic CoWO ₄ microcrystals. Journal Physics D: Applied Physics, 2016, 49, 045305.	1.3	10
89	Infrared dispersion analysis and Raman scattering spectra of taurine single crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 276-284.	2.0	10
90	Crystal structures and phonon modes of Ba(Ca $<$ sub $>$ 1/2 $<$ /sub $>$ W $<$ sub $>$ 1/2 $<$ /sub $>$)O $<$ sub $>$ 3 $<$ /sub $>$ Ba(Ca $<$ sub $>$ 1/2 $<$ /sub $>$ Mo $<$ sub $>$ 1/2 $<$ /sub $>$)O $<$ sub $>$ 3 $<$ /sub $>$ and Ba(Sr $<$ sub $>$ 1/2 $<$ /sub $>$ W $<$ sub $>$ 1/2 $<$ /sub $>$)O $<$ sub $>$ 3 $<$ /sub $>$ complex perovskites investigated by Raman scattering. Journal of Raman Spectroscopy, 2010, 41, 93-97.	1.2	9

#	Article	IF	CITATIONS
91	Structural and thermal evolution studies of LaSbO4 ceramics prepared by solid-state reaction method. Materials Chemistry and Physics, 2013, 140, 255-259.	2.0	9
92	Synthesis, characterization and catalytic potential of MgNiO2 nanoparticles obtained from a novel [MgNi(opba)] ·9nH2O chain. Ceramics International, 2016, 42, 13635-13641.	2.3	9
93	New insight on the use of diffuse reflectance spectroscopy for the optical characterization of Ln2Ge2O7 (Ln = lanthanides) pyrogermanates. Journal of Luminescence, 2021, 238, 118312.	1.5	9
94	Experimental evaluation of the activity and selectivity of pure MnWO4 and doped with rare earth ions in the CO2 photoreduction process. Materials Research Bulletin, 2022, 153, 111912.	2.7	9
95	Theoretical predictions and experimental results of the hydrothermal processing of strontium tungstates. Ferroelectrics, 2000, 241, 271-278.	0.3	8
96	Polarized Raman scattering and infrared spectroscopy of a natural manganocolumbite single crystal. Journal of Raman Spectroscopy, 2010, 41, 1044-1049.	1.2	8
97	Structural, optical-vibration and magnetic properties of tetragonal lanthanide pyrogermanates obtained by molten-salt synthesis. Journal of Magnetism and Magnetic Materials, 2019, 482, 160-167.	1.0	8
98	Vibrational spectroscopy and microwave dielectric properties of Ca5â^'xBaxNb2TiO12 and Ca5â^'xBaxTa2TiO12 ceramics. Journal of Applied Physics, 2005, 98, 084105.	1.1	7
99	Catalytic carbon deposition-oxidation over Ni, Fe and Co catalysts: A new indirect route to store and transport gas hydrocarbon fuels. Catalysis Communications, 2013, 32, 58-61.	1.6	7
100	Luminescence properties of PrNbO4 and EuNbO4 orthoniobates and investigation of their structural phase transition by high-temperature Raman spectroscopy. Journal of Luminescence, 2021, 238, 118284.	1.5	7
101	Vibrational spectroscopy and intrinsic dielectric properties of Sr2RE8(SiO4)6O2 (REÂ=Ârare earth) ceramics. Materials Research Bulletin, 2022, 146, 111616.	2.7	7
102	Influence of hydrothermal powder morphology on the sintered microstructure of MnZn ferrites. Journal of Materials Chemistry, 1997, 7, 2441-2446.	6.7	6
103	Optical phonon characteristics of incommensurate and commensurate modulated phases of Bi3NbO7 ceramics. Journal of Applied Physics, 2008, 103, 094108.	1.1	6
104	Theoretical Calculations and Hydrothermal Processing of BaWO4 Materials Under Environmentally Friendly Conditions. Journal of Solution Chemistry, 2011, 40, 1126-1139.	0.6	6
105	High-temperature antiferroelectric and ferroelectric phase transitions in phase pure LaTaO 4. Ceramics International, 2017, 43, 1543-1551.	2.3	6
106	Optical-vibration properties of Li2ZnGeO4 dielectric ceramics. Vibrational Spectroscopy, 2020, 110, 103130.	1.2	6
107	Dielectric Properties of Hydrothermal Nickel-Zinc Ferrites. Journal De Physique III, 1996, 6, 843-852.	0.3	6
108	Influence of drying temperature and atmosphere on the mechanical strength of ironâ€ore agglomerates and sodium silicates for application in sintering processes. Canadian Journal of Chemical Engineering, 2016, 94, 75-80.	0.9	5

#	Article	IF	CITATIONS
109	A soft chemistry approach to preparing (de)sodiated transition-metal hydroxy molybdates. CrystEngComm, 2020, 22, 1939-1955.	1.3	5
110	Optical-vibration and intrinsic dielectric properties of low-k high-Q Zn2GeO4 ceramics. Journal of Physics and Chemistry of Solids, 2021, 148, 109693.	1.9	5
111	Synthesis of NiMoO4 ceramics by proteic sol-gel method and investigation of their catalytic properties in hydrogen production. Materials Chemistry and Physics, 2021, 262, 124301.	2.0	5
112	Polymorphism in Gd2Ge2O7 ceramics: Structural, vibrational, and optical features. Ceramics International, 2021, 47, 15202-15209.	2.3	5
113	Polymorphic-Induced Transformations in CaTa ₂ O ₆ Single-Crystal Fibers Obtained by Laser-Heated Pedestal Growth. Crystal Growth and Design, 2013, 13, 5289-5294.	1.4	4
114	Optical phonon features of triclinic montebrasite: Dispersion analysis and non-polar Raman modes. Vibrational Spectroscopy, 2015, 77, 25-34.	1.2	4
115	Structural and vibrational properties of phase-pure monoclinic NdLuO3 interlanthanides synthesized from nanostructured precursors. Journal of Alloys and Compounds, 2016, 678, 57-64.	2.8	4
116	Intra-grain polarized infrared spectroscopy realized in domain-engineered Zn2GeO4 ceramics. Materials Research Bulletin, 2019, 118, 110513.	2.7	4
117	New insights on the structural and optical-vibration properties of noncentrosymmetric lanthanides pyrogermanates. Ceramics International, 2020, 46, 13491-13501.	2.3	4
118	Optical phonon characteristics of an orthorhombic-transformed polymorph of CaTa ₂ O ₆ single crystal fibre. Materials Research Express, 2014, 1, 016304.	0.8	3
119	Synthesis, structural and opticalâ€vibration properties of Ba 3 Sc 4 O 9 and Sr 3 Sc 4 O 9 ceramics. Journal of Raman Spectroscopy, 2019, 50, 474-480.	1.2	3
120	Microwave-Hydrothermal Synthesis of Transition Metal Tungstates with Nanosized Particles. Solid State Phenomena, 0, 194, 209-212.	0.3	2
121	Thermal, vibrational and optical properties of PrLuO ₃ interlanthanides from hydrothermally-derived precursors. Dalton Transactions, 2017, 46, 825-835.	1.6	2
122	Synthesis of SmLuO3 and EuLuO3 interlanthanides from hydrothermally-derived nanostructured precursors. Arabian Journal of Chemistry, 2019, 12, 4035-4043.	2.3	2
123	Magnetic Patterns in Hydrothermal Ferrites by Magnetic Force Microscopy. Journal of Materials Research, 2002, 17, 1251-1253.	1.2	1
124	Effect of Sn on methane decomposition over Fe supported catalysts to produce carbon. Hyperfine Interactions, 2011, 203, 67-74.	0.2	1
125	Synthesis and characterisation of the vibrational and electrical properties of antiferromagnetic 6L-Ba ₂ CoTeO ₆ ceramics. Dalton Transactions, 2019, 48, 11112-11121.	1.6	1
126	Optical vibrational properties of Bi2-Ca Sn2O7-/2 ceramics. Journal of Alloys and Compounds, 2019, 786, 1030-1039.	2.8	1

#	Article	IF	CITATIONS
127	Polarized Raman scattering and infrared dispersion analysis of Na ₂ ZnGeO ₄ ceramics. Journal of Raman Spectroscopy, 2020, 51, 1372-1382.	1.2	1
128	Microstructure and optical vibration features of complex cobalt molybdates synthesized by the microwave and conventional hydrothermal processes. Vibrational Spectroscopy, 2020, 109, 103107.	1.2	1
129	Processing of Antiferroelectric Lead Zirconates under Hydrothermal Conditions. Key Engineering Materials, 2002, 206-213, 107-110.	0.4	0
130	Electroceramic Materials of Tailored Phase and Morphology by Hydrothermal Technology ChemInform, 2003, 34, no.	0.1	0
131	Effect of Sn on methane decomposition over Fe supported catalysts to produce carbon. , 2011, , 225-232.		O
132	Use of Carbon-based Nanomaterials on the Cold Agglomeration of Iron Ore Fines. ISIJ International, 2019, 59, 660-664.	0.6	0