
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11551934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. Bone, 2020, 139, 115493.	2.9	86
2	Selective Calcium-Dependent Inhibition of ATP-Gated P2X3 Receptors by Bisphosphonate-Induced Endogenous ATP Analog ApppI. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 472-481.	2.5	21
3	Uptake of free, calcium-bound and liposomal encapsulated nitrogen containing bisphosphonates by breast cancer cells. European Journal of Pharmaceutical Sciences, 2016, 86, 58-66.	4.0	12
4	Liposome encapsulated zoledronate favours M1-like behaviour in murine macrophages cultured with soluble factors from breast cancer cells. BMC Cancer, 2015, 15, 4.	2.6	31
5	Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Research, 2015, 17, 101.	5.0	291
6	siRNA Transfection with Calcium Phosphate Nanoparticles Stabilized with PEGylated Chelators. Advanced Healthcare Materials, 2013, 2, 134-144.	7.6	57
7	Butyrophilin 3A1 Plays an Essential Role in Prenyl Pyrophosphate Stimulation of Human Vγ2Vδ2 T Cells. Journal of Immunology, 2013, 191, 1029-1042.	0.8	142
8	<i>In Vivo</i> Phosphoantigen Levels in Bisphosphonate-Treated Human Breast Tumors Trigger Vγ9VÎ″2 T-cell Antitumor Cytotoxicity through ICAM-1 Engagement. Clinical Cancer Research, 2012, 18, 6249-6259.	7.0	46
9	Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδT-cell subset. Blood, 2012, 120, 2269-2279.	1.4	443
10	ApoE3 mediated polymeric nanoparticles containing curcumin: Apoptosis induced in vitro anticancer activity against neuroblastoma cells. International Journal of Pharmaceutics, 2012, 437, 29-41.	5.2	51
11	Apoptosis-induced anticancer effect of transferrin-conjugated solid lipid nanoparticles of curcumin. Cancer Nanotechnology, 2012, 3, 65-81.	3.7	27
12	Targeting Efficiency and Biodistribution of Zoledronate Conjugated Docetaxel Loaded Pegylated PBCA Nanoparticles for Bone Metastasis. Advanced Functional Materials, 2012, 22, 4101-4114.	14.9	25
13	Bone metastasis targeting: A novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel. Journal of Controlled Release, 2012, 158, 470-478.	9.9	140
14	Opsonization, Biodistribution, Cellular Uptake and Apoptosis Study of PEGylated PBCA Nanoparticle as Potential Drug Delivery Carrier. Pharmaceutical Research, 2012, 29, 53-68.	3.5	85
15	Biochemical and molecular mechanisms of action of bisphosphonates. Bone, 2011, 49, 34-41.	2.9	426
16	Correlation between time-dependent inhibition of human farnesyl pyrophosphate synthase and blockade of mevalonate pathway by nitrogen-containing bisphosphonates in cultured cells. Biochemical and Biophysical Research Communications, 2011, 407, 663-667.	2.1	15
17	High Phosphoantigen Levels in Bisphosphonate-Treated Human Breast Tumors Promote Vγ9Vδ2 T-Cell Chemotaxis and Cytotoxicity <i>In Vivo</i> . Cancer Research, 2011, 71, 4562-4572.	0.9	134
18	Indirect Stimulation of Human Vγ2Vδ2 T Cells through Alterations in Isoprenoid Metabolism. Journal of Immunology, 2011, 187, 5099-5113.	0.8	79

#	Article	IF	CITATIONS
19	ApoE3 Mediated Poly(butyl) Cyanoacrylate Nanoparticles Containing Curcumin: Study of Enhanced Activity of Curcumin against Beta Amyloid Induced Cytotoxicity Using <i>In Vitro</i> Cell Culture Model. Molecular Pharmaceutics, 2010, 7, 815-825.	4.6	121
20	Aminobisphosphonate-pretreated dendritic cells trigger successful Vγ9VÎ′2 T cell amplification for immunotherapy in advanced cancer patients. Cancer Immunology, Immunotherapy, 2010, 59, 1611-1619.	4.2	77
21	Determination of permeation resistance distribution in in vitro cell monolayer permeation experiments. European Journal of Pharmaceutical Sciences, 2010, 40, 132-142.	4.0	10
22	Mevalonate pathway intermediates downregulate zoledronic acid-induced isopentenyl pyrophosphate and ATP analog formation in human breast cancer cells. Biochemical Pharmacology, 2010, 79, 777-783.	4.4	47
23	Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis. International Journal of Pharmaceutics, 2010, 398, 190-203.	5.2	236
24	Comparison of in vitro cell models in predicting in vivo brain entry of drugs. International Journal of Pharmaceutics, 2010, 402, 27-36.	5.2	55
25	Modelling of Drug Disposition Kinetics in <i>In Vitro</i> Intestinal Absorption Cell Models. Basic and Clinical Pharmacology and Toxicology, 2010, 106, 180-188.	2.5	27
26	Lysosomal-Mitochondrial Axis in Zoledronic Acid-induced Apoptosis in Human Follicular Lymphoma Cells. Journal of Biological Chemistry, 2010, 285, 1967-1979.	3.4	18
27	Effects of Experimental Setup on the Apparent Concentration Dependency of Active Efflux Transport in in Vitro Cell Permeation Experiments. Molecular Pharmaceutics, 2010, 7, 605-617.	4.6	19
28	Kinetics of Cellular Retention during Caco-2 Permeation Experiments: Role of Lysosomal Sequestration and Impact on Permeability Estimates. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 882-892.	2.5	32
29	In vitro–in vivo correlation in p-glycoprotein mediated transport in intestinal absorption. European Journal of Pharmaceutical Sciences, 2009, 36, 200-211.	4.0	48
30	Analysis of Unstirred Water Layer in In Vitro Permeability Experiments. Journal of Pharmaceutical Sciences, 2009, 98, 4469-4479.	3.3	100
31	Zoledronic acid induces formation of a proâ€apoptotic ATP analogue and isopentenyl pyrophosphate in osteoclasts <i>in vivo</i> and in MCFâ€7 cells <i>in vitro</i> . British Journal of Pharmacology, 2009, 157, 427-435.	5.4	73
32	Analysis of endogenous ATP analogs and mevalonate pathway metabolites in cancer cell cultures using liquid chromatography–electrospray ionization mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 2967-2975.	2.3	39
33	Peripheral blood monocytes are responsible for Î ³ δT cell activation induced by zoledronic acid through accumulation of IPP/DMAPP. British Journal of Haematology, 2009, 144, 245-250.	2.5	260
34	The level of ATP analog and isopentenyl pyrophosphate correlates with zoledronic acid-induced apoptosis in cancer cells in vitro. Bone, 2009, 45, 1153-1160.	2.9	55
35	Activation of $\hat{I}^{\hat{J}}$ T Cells by Bisphosphonates. Advances in Experimental Medicine and Biology, 2009, 658, 11-20.	1.6	70
36	The Asymmetry of the Unstirred Water Layer in Permeability Experiments. Pharmaceutical Research, 2008, 25, 1714-1722.	3.5	42

#	Article	IF	CITATIONS
37	Protein concentration and pH affect the apparent P-glycoprotein–ATPase activation kinetics. International Journal of Pharmaceutics, 2008, 346, 169-172.	5.2	6
38	Effect of N-betainate and N-piperazine derivatives of chitosan on the paracellular transport of mannitol in Caco-2 cells. European Journal of Pharmaceutical Sciences, 2008, 35, 226-234.	4.0	6
39	Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. European Journal of Pharmaceutical Sciences, 2008, 35, 383-396.	4.0	220
40	Bisphosphonate-induced ATP analog formation and its effect on inhibition of cancer cell growth. Anti-Cancer Drugs, 2008, 19, 391-399.	1.4	65
41	Decrease in Intracellular Concentration Causes the Shift in Km Value of Efflux Pump Substrates. Drug Metabolism and Disposition, 2007, 35, 1574-1579.	3.3	35
42	Zoledronic acid-induced IPP/ApppI production in vivo. Life Sciences, 2007, 81, 1066-1070.	4.3	55
43	Drug adsorption to plastic containers and retention of drugs in cultured cells under in vitro conditions. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 64, 369-378.	4.3	118
44	A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. British Journal of Pharmacology, 2006, 147, 437-445.	5.4	242
45	Metabolic and Efflux Properties of Caco-2 Cells Stably Transfected with Nuclear Receptors. Pharmaceutical Research, 2006, 23, 1991-2001.	3.5	25
46	Quantitative determination of cholesterol, sitosterol, and sitostanol in cultured Caco-2 cells by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 821, 144-152.	2.3	48
47	In vitro Comparison of Clodronate, Pamidronate and Zoledronic Acid Effects on Rat Osteoclasts and Human Stem Cell-Derived Osteoblasts. Basic and Clinical Pharmacology and Toxicology, 2005, 97, 382-391.	2.5	59
48	Absorption properties and P-glycoprotein activity of modified Caco-2 cell lines. European Journal of Pharmaceutical Sciences, 2005, 26, 266-279.	4.0	40
49	Characterization of Caco-2 cell monolayer drug transport properties by cassette dosing using UV/fluorescence HPLC. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 319-328.	4.3	22
50	Cellular uptake and metabolism of clodronate and its derivatives in Caco-2 cells: a possible correlation with bisphosphonate-induced gastrointestinal side-effects. European Journal of Pharmaceutical Sciences, 2003, 19, 23-29.	4.0	14
51	Inhibition of mevalonate pathway is involved in alendronate-induced cell growth inhibition, but not in cytokine secretion from macrophages in vitro. European Journal of Pharmaceutical Sciences, 2003, 19, 223-230.	4.0	35
52	Effects of various absorption enhancers on transport of clodronate through Caco-2 cells. International Journal of Pharmaceutics, 2003, 261, 129-136.	5.2	40
53	Growth Inhibition of Macrophage-like and Other Cell Types by Liposome-encapsulated, Calcium-bound, and Free BisphosphonatesIn Vitro. Journal of Drug Targeting, 2003, 11, 279-286.	4.4	3
54	Systemic Depletion of Macrophages by Liposomal Bisphosphonates Reduces Neointimal Formation Following Balloon-Injury in the Rat Carotid Artery. Journal of Cardiovascular Pharmacology, 2003, 42, 671-679.	1.9	65

#	Article	IF	CITATIONS
55	Further Insight into Mechanism of Action of Clodronate: Inhibition of Mitochondrial ADP/ATP Translocase by a Nonhydrolyzable, Adenine-Containing Metabolite. Molecular Pharmacology, 2002, 61, 1255-1262.	2.3	291
56	Macrophage Depletion by Clodronate-Containing Liposomes Reduces Neointimal Formation After Balloon Injury in Rats and Rabbits. Circulation, 2002, 106, 599-605.	1.6	221
57	Effects of low-dose, noncytotoxic, intraarticular liposomal clodronate on development of erosions and proteoglycan loss in established antigen-induced arthritis in rabbits. Arthritis and Rheumatism, 2001, 44, 1908-1916.	6.7	58
58	The molecular mechanism of action of the antiresorptive and antiinflammatory drug clodronate: Evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arthritis and Rheumatism, 2001, 44, 2201-2210.	6.7	233
59	The cellular uptake and metabolism of clodronate in RAW 264 macrophages. Pharmaceutical Research, 2001, 18, 1550-1555.	3.5	38
60	Effects of calcium and lipophilicity on transport of clodronate and its esters through Caco-2 cells. International Journal of Pharmaceutics, 2001, 213, 135-142.	5.2	17
61	Analysis of an adenine nucleotide-containing metabolite of clodronate using ion pair high-performance liquid chromatography–electrospray ionisation mass spectrometry. Biomedical Applications, 2000, 738, 395-403.	1.7	35
62	A lipid carrier with a membrane active component and a small complex size are required for efficient cellular delivery of anti-sense phosphorothioate oligonucleotides. European Journal of Pharmaceutical Sciences, 2000, 10, 187-193.	4.0	65
63	Transdermal delivery of levosimendan. European Journal of Pharmaceutical Sciences, 2000, 11, 343-350.	4.0	26
64	Influence of lipids on the mannitol flux during transdermal iontophoresis in vitro. European Journal of Pharmaceutical Sciences, 2000, 10, 97-102.	4.0	26
65	A Peptide Prodrug Approach for Improving Bisphosphonate Oral Absorption. Journal of Medicinal Chemistry, 2000, 43, 3641-3652.	6.4	104
66	Farnesol and Geranylgeraniol Prevent Activation of Caspases by Aminobisphosphonates: Biochemical Evidence for Two Distinct Pharmacological Classes of Bisphosphonate Drugs. Molecular Pharmacology, 1999, 56, 131-140.	2.3	238
67	Synthesis and preclinical pharmacology of 2-(2-aminopyrimidinio) ethylidene-1,1-bisphosphonic acid betaine (ISA-13-1)-a novel bisphosphonate. Pharmaceutical Research, 1999, 16, 1399-1406.	3.5	19
68	Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. Journal of Controlled Release, 1999, 58, 207-214.	9.9	127
69	Liposome–skin interactions and their effects on the skin permeation of drugs. European Journal of Pharmaceutical Sciences, 1999, 7, 279-286.	4.0	146
70	Contrasting effects of alendronate and clodronate on RAW 264 macrophages: the role of a bisphosphonate metabolite. European Journal of Pharmaceutical Sciences, 1999, 8, 109-118.	4.0	101
71	Effects of Bisphosphonates on the Inflammatory Processes of Activated Macrophages. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 321-324.	1.6	5
72	Lipid fusion in oligonucleotide and gene delivery with cationic lipids. Advanced Drug Delivery Reviews, 1998, 34, 37-49.	13.7	91

#	Article	IF	CITATIONS
73	Physicochemical and morphological properties of complexes made of cationic liposomes and oligonucleotides. International Journal of Pharmaceutics, 1998, 167, 191-203.	5.2	41
74	Enhancement of percutaneous absorption of naproxen by phospholipids. International Journal of Pharmaceutics, 1998, 175, 225-230.	5.2	47
75	Effects of tiludronate and ibandronate on the secretion of proinflammatory cytokines and nitric oxide from macrophages in vitro. Life Sciences, 1998, 62, PL95-PL102.	4.3	64
76	Induced Production of Nitric Oxide, Tumor Necrosis Factor, and Interleukin-6 in RAW 264.7 Macrophages by Streptomycetes from Indoor Air of Moldy Houses. Archives of Environmental Health, 1997, 52, 426-432.	0.4	36
77	Streptomyces spores from mouldy houses induce nitric oxide, TNFα and IL-6 secretion from RAW264.7 macrophage cell line without causing subsequent cell death. Environmental Toxicology and Pharmacology, 1997, 3, 57-63.	4.0	43
78	EFFECTS OF LIPOSOME-ENCAPSULATED BISPHOSPHONATES ON ACETYLATED LDL METABOLISM, LIPID ACCUMULATION AND VIABILITY OF PHAGOCYTING CELLS. Life Sciences, 1997, 62, 413-422.	4.3	22
79	In Vitro and In Vivo Effects of Tetrakisphosphonates on Bone Resorption, Tumor Osteolysis, Ectopic Calcification, and Macrophages. Journal of Pharmaceutical Sciences, 1997, 86, 283-289.	3.3	10
80	Clodronate and Liposome-Encapsulated Clodronate Are Metabolized to a Toxic ATP Analog, Adenosine 5′-(β,γ-Dichloromethylene) Triphosphate, by Mammalian Cells In Vitro. Journal of Bone and Mineral Research, 1997, 12, 1358-1367.	2.8	388
81	Inhibition of growth of Dictyostelium discoideum amoebae by bisphosphonate drugs is dependent on cellular uptake. Pharmaceutical Research, 1997, 14, 625-630.	3.5	64
82	Identification of adenine nucleotide-containing metabolites of bisphosphonate drugs using ion-pair liquid chromatography–electrospray mass spectrometry. Biomedical Applications, 1997, 704, 187-195.	1.7	91
83	Calcitonin promotes osteoclast survival in vitro. Molecular and Cellular Endocrinology, 1996, 122, 119-129.	3.2	62
84	Interaction of liposomes with human skin in vitro — The influence of lipid composition and structure. Lipids and Lipid Metabolism, 1996, 1304, 179-189.	2.6	210
85	Accumulation of bisphosphonates in the aorta and some other tissues of healthy and atherosclerotic rabbits. Translational Research, 1996, 127, 200-206.	2.3	49
86	Macrophage-like RAW 264 cell line and time-resolved fluoroimmunoassay (TRFIA) as tools in screening drug effects on cytokine secretion. International Journal of Immunopharmacology, 1995, 17, 475-480.	1.1	37
87	Studies on liposome formulations for intra-articular delivery of clodronate. Journal of Controlled Release, 1995, 35, 145-154.	9.9	32
88	Effect of liposomal and free bisphosphonates on the IL-1 beta, IL-6 and TNF alpha secretion from RAW 264 cells in vitro. Pharmaceutical Research, 1995, 12, 916-922.	3.5	188
89	The effects of liposome surface charge and size on the intracellular delivery of clodronate and gallium in vitro. International Journal of Pharmaceutics, 1994, 107, 189-197.	5.2	23
90	Oligonucleotide-cationic liposome interactions. A physicochemical study. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1195, 115-123.	2.6	93

#	Article	IF	CITATIONS
91	Clodronate (dichloromethylene bisphosphonate) inhibits LPS-stimulated IL-6 and TNF production by raw 264 cells. Life Sciences, 1994, 54, PL229-PL234.	4.3	37
92	Growth Inhibition of Macrophage-Like and Other Cell Types by Liposome-Encapsulated, Calcium-Bound, and Free Bisphosphonates <i>In Vitro</i> . Journal of Drug Targeting, 1994, 2, 299-308.	4.4	90
93	Liposome-mediated delivery of gallium to macrophage-like cells in vitro: demonstration of a transferrin-independent route for intracellular delivery of metal ions. Pharmaceutical Research, 1993, 10, 1130-1135.	3.5	14
94	Effects of Clodronate and Pamidronate on Splenic and Hepatic Phagocytic Cells of Mice. Basic and Clinical Pharmacology and Toxicology, 1991, 68, 284-286.	0.0	24
95	Tissue Distribution, Metabolism, and Excretion of ¹⁴ Câ€∓CDD in a TCDD usceptible and a TCDDâ€Resistant Rat Strain ^a . Basic and Clinical Pharmacology and Toxicology, 1990, 66, 93-100.	0.0	106
96	Comparison of the Distribution of Three Bisphosphonates in Mice. Basic and Clinical Pharmacology and Toxicology, 1990, 66, 294-298.	0.0	54
97	A One Year Followâ€Up Study of the Distribution of ¹⁴ C lodronate in Mice and Rats. Basic and Clinical Pharmacology and Toxicology, 1988, 62, 51-53.	0.0	42