Jack Greenblatt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11551853/publications.pdf

Version: 2024-02-01

66 papers 12,562 citations

71102 41 h-index 110387 64 g-index

67 all docs

67 docs citations

67 times ranked 13910 citing authors

#	Article	IF	CITATIONS
1	Epstein-Barr Virus BGLF2 commandeers RISC to interfere with cellular miRNA function. PLoS Pathogens, 2022, 18, e1010235.	4.7	6
2	Characterization of a cancer-associated Epstein-Barr virus EBNA1 variant reveals a novel interaction with PLOD1 and PLOD3. Virology, 2021, 562, 103-109.	2.4	7
3	Identification of ARKL1 as a Negative Regulator of Epstein-Barr Virus Reactivation. Journal of Virology, 2019, 93, .	3.4	4
4	The Med31 Conserved Component of the Divergent Mediator Complex in Tetrahymena thermophila Participates in Developmental Regulation. Current Biology, 2019, 29, 2371-2379.e6.	3.9	13
5	The Epstein-Barr Virus BMRF1 Protein Activates Transcription and Inhibits the DNA Damage Response by Binding NuRD. Journal of Virology, 2019, 93, .	3.4	16
6	USP7 Regulates Cytokinesis through FBXO38 and KIF20B. Scientific Reports, 2019, 9, 2724.	3. 3	25
7	Direct interaction between the PRDM3 and PRDM16 tumor suppressors and the NuRD chromatin remodeling complex. Nucleic Acids Research, 2019, 47, 1225-1238.	14.5	32
8	Epstein–Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity. Nature Microbiology, 2019, 4, 78-88.	13.3	95
9	Identification and Characterization of USP7 Targets in Cancer Cells. Scientific Reports, 2018, 8, 15833.	3.3	43
10	A Screen for Epstein-Barr Virus Proteins That Inhibit the DNA Damage Response Reveals a Novel Histone Binding Protein. Journal of Virology, 2018, 92, .	3.4	30
11	Proteome-wide dataset supporting the study of ancient metazoan macromolecular complexes. Data in Brief, 2016, 6, 715-721.	1.0	5
12	C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nature Biotechnology, 2015, 33, 555-562.	17.5	271
13	Extracting high confidence protein interactions from affinity purification data: At the crossroads. Journal of Proteomics, 2015, 118, 63-80.	2.4	30
14	Panorama of ancient metazoan macromolecular complexes. Nature, 2015, 525, 339-344.	27.8	478
15	Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli. PLoS Genetics, 2014, 10, e1004120.	3.5	96
16	Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation. Cell Reports, 2014, 8, 297-310.	6.4	72
17	Networks of Histone Demethylases and Their Relevance to the Regulation of Chromatin Structure and Dynamics. , 2014, , 1-32.		0
18	Histone Methyltransferase Complexes in Transcription, Development, and Cancer., 2014, , 33-47.		0

#	Article	IF	Citations
19	Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays. Journal of Visualized Experiments, 2012, , .	0.3	9
20	Identification of Protein Complexes in Escherichia coli using Sequential Peptide Affinity Purification in Combination with Tandem Mass Spectrometry. Journal of Visualized Experiments, 2012, , .	0.3	2
21	Array-Based Synthetic Genetic Screens to Map Bacterial Pathways and Functional Networks in Escherichia coli. Methods in Molecular Biology, 2011, 765, 125-153.	0.9	7
22	A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair. Molecular Microbiology, 2011, 79, 484-502.	2.5	241
23	A Lentiviral Functional Proteomics Approach Identifies Chromatin Remodeling Complexes Important for the Induction of Pluripotency. Molecular and Cellular Proteomics, 2010, 9, 811-823.	3.8	83
24	Epistatic relationships reveal the functional organization of yeast transcription factors. Molecular Systems Biology, 2010, 6, 420.	7.2	50
25	Conserved Network of Proteins Essential for Bacterial Viability. Journal of Bacteriology, 2009, 191, 4732-4749.	2.2	71
26	Two-Color Cell Array Screen Reveals Interdependent Roles for Histone Chaperones and a Chromatin Boundary Regulator in Histone Gene Repression. Molecular Cell, 2009, 35, 340-351.	9.7	88
27	An atlas of chaperone–protein interactions in <i>Saccharomyces cerevisiae</i> : implications to protein folding pathways in the cell. Molecular Systems Biology, 2009, 5, 275.	7.2	202
28	Interacting proteins Rtt109 and Vps75 affect the efficiency of non-homologous end-joining in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 2008, 469, 157-164.	3.0	39
29	Local coherence in genetic interaction patterns reveals prevalent functional versatility. Bioinformatics, 2008, 24, 2376-2383.	4.1	26
30	Systematic Analysis of the Protein Interaction Network for the Human Transcription Machinery Reveals the Identity of the 7SK Capping Enzyme. Molecular Cell, 2007, 27, 262-274.	9.7	404
31	Investigating the in vivo activity of the DeaD protein using protein–protein interactions and the translational activity of structured chloramphenicol acetyltransferase mRNAs. Journal of Cellular Biochemistry, 2007, 100, 642-652.	2.6	19
32	Identifying functional modules in the physical interactome of Saccharomyces cerevisiae. Proteomics, 2007, 7, 944-960.	2.2	135
33	PIPE: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs. BMC Bioinformatics, 2006, 7, 365.	2.6	157
34	Formation of a Distinctive Complex between the Inducible Bacterial Lysine Decarboxylase and a Novel AAA+ ATPase. Journal of Biological Chemistry, 2006, 281, 1532-1546.	3.4	54
35	Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature, 2005, 433, 531-537.	27.8	1,093
36	Navigating the Chaperone Network: An Integrative Map of Physical and Genetic Interactions Mediated by the Hsp90 Chaperone. Cell, 2005, 120, 715-727.	28.9	729

#	Article	IF	Citations
37	Global Mapping of the Yeast Genetic Interaction Network. Science, 2004, 303, 808-813.	12.6	1,908
38	The functional landscape of mouse gene expression. Journal of Biology, 2004, 3, 21.	2.7	259
39	Solution Structure of the Carboxyl-Terminal Domain of RAP74 and NMR Characterization of the FCP1-Binding Sites of RAP74 and Human TFIIBâ€,‡. Biochemistry, 2003, 42, 1460-1469.	2.5	19
40	Methylation of Histone H3 by Set2 in <i>Saccharomyces cerevisiae</i> Is Linked to Transcriptional Elongation by RNA Polymerase II. Molecular and Cellular Biology, 2003, 23, 4207-4218.	2.3	600
41	NMR structure of a complex containing the TFIIF subunit RAP74 and the RNA polymerase II carboxyl-terminal domain phosphatase FCP1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5688-5693.	7.1	38
42	Organization and Function of APT, a Subcomplex of the Yeast Cleavage and Polyadenylation Factor Involved in the Formation of mRNA and Small Nucleolar RNA 3′-Ends. Journal of Biological Chemistry, 2003, 278, 33000-33010.	3.4	161
43	Regulation of transcription elongation by phosphorylation. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1577, 261-275.	2.4	169
44	Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes and Development, 2001, 15, 3319-3329.	5.9	356
45	The Acute Myeloid Leukemia-Associated Protein, Dek, Forms a Splicing-Dependent Interaction with Exon-Product Complexes. Journal of Cell Biology, 2000, 150, 309-320.	5.2	118
46	Topological Localization of the Carboxyl-Terminal Domain of RNA Polymerase II in the Initiation Complex. Journal of Biological Chemistry, 1999, 274, 19868-19873.	3.4	15
47	Activation of the Murine Dihydrofolate Reductase Promoter by E2F1. Journal of Biological Chemistry, 1999, 274, 15883-15891.	3.4	47
48	Functional importance of regions in Escherichia coli elongation factor NusA that interact with RNA polymerase, the bacteriophage lambda N protein and RNA. Molecular Microbiology, 1999, 34, 523-537.	2.5	50
49	NMR Structure of the Bacteriophage î» N Peptide/boxB RNA Complex: Recognition of a GNRA Fold by an Arginine-Rich Motif. Cell, 1998, 93, 289-299.	28.9	257
50	Interaction of Elongation Factors TFIIS and Elongin A with a Human RNA Polymerase II Holoenzyme Capable of Promoter-specific Initiation and Responsive to Transcriptional Activators. Journal of Biological Chemistry, 1997, 272, 24563-24571.	3.4	90
51	Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage λ N-Peptide/boxBRNA Complex. Journal of the American Chemical Society, 1997, 119, 6711-6721.	13.7	583
52	RNA polymerase II holoenzyme and transcriptional regulation. Current Opinion in Cell Biology, 1997, 9, 310-319.	5.4	105
53	Modular organization of the E2F1 activation domain and its interaction with general transcription factors TBP and TFIIH. Oncogene, 1997, 15, 2643-2658.	5.9	52
54	The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature, 1997, 385, 357-361.	27.8	844

#	Article	lF	CITATIONS
55	Interaction between acidic transcriptional activation domains of herpes simplex virus activator protein VP16 and transcriptional initiation factor IID. Methods in Enzymology, 1996, 274, 120-133.	1.0	5
56	The upstream activator CTF/NF1 and RNA polymerase II share a common element involved in transcriptional activation. Nucleic Acids Research, 1994, 22, 1966-1973.	14.5	60
57	Altered promoter binding of the TATA box-binding factor induced by the transcriptional activation domain of VP16 and suppressed by TF11A. Molecular Genetics and Genomics, 1993, 241-241, 694-699.	2.4	13
58	Transcriptional antitermination. Nature, 1993, 364, 401-406.	27.8	253
59	The transactivator proteins VP16 and GAL4 bind replication factor A. Cell, 1993, 73, 1223-1232.	28.9	247
60	Riding high on the TATA box. Nature, 1992, 360, 16-17.	27.8	37
61	Roles of TFIID in transcriptional initiation by RNA polymerase II. Cell, 1991, 66, 1067-1070.	28.9	199
62	Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature, 1991, 351, 588-590.	27.8	365
63	[3] Using protein affinity chromatography to probe structure of protein machines. Methods in Enzymology, 1991, 208, 24-45.	1.0	53
64	Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature, 1990, 345, 783-786.	27.8	681
65	Structure and associated DNA-helicase activity of a general transcription initiation factor that binds to RNA polymerase II. Nature, 1989, 341, 410-414.	27.8	205
66	Termination of transcription by nusA gene protein of Escherichia coli. Nature, 1981, 292, 215-220.	27.8	141