Soodabeh Davaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11550366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel nanocomposite scaffold based on gelatin/PLGA-PEG-PLGA hydrogels embedded with TGF-β1 for chondrogenic differentiation of human dental pulp stem cells in vitro. International Journal of Biological Macromolecules, 2022, 201, 270-287.	3.6	23
2	Enhancing the function of PLGA-collagen scaffold by incorporating TGF-β1-loaded PLGA-PEG-PLGA nanoparticles for cartilage tissue engineering using human dental pulp stem cells. Drug Delivery and Translational Research, 2022, 12, 2960-2978.	3.0	10
3	Targeted Drug Delivery: Advancements, Applications, and Challenges. , 2021, , 195-212.		2
4	Design and fabrication of M-SAPO-34/chitosan scaffolds and evaluation of their effects on dental tissue engineering. International Journal of Biological Macromolecules, 2021, 187, 281-295.	3.6	8
5	A review of hydrogel systems based on poly(N-isopropyl acrylamide) for use in the engineering of bone tissues. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112035.	2.5	10
6	Common biocompatible polymeric materials for tissue engineering and regenerative medicine. Materials Chemistry and Physics, 2020, 242, 122528.	2.0	69
7	Harnessing nanoparticles for the efficient delivery of the CRISPR/Cas9 system. Nano Today, 2020, 34, 100895.	6.2	45
8	Preparation and characterization of novel anti-inflammatory biological agents based on piroxicam-loaded poly-ε-caprolactone nano-particles for sustained NSAID delivery. Drug Delivery, 2020, 27, 269-282.	2.5	21
9	Stimuli-responsive polyvinylpyrrolidone-NIPPAm-lysine graphene oxide nano-hybrid as an anticancer drug delivery on MCF7 cell line. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 443-454.	1.9	17
10	Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering. Frontiers of Chemical Science and Engineering, 2019, 13, 108-119.	2.3	42
11	Development and characterization of a novel conductive polyaniline-g-polystyrene/Fe ₃ O ₄ nanocomposite for the treatment of cancer. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 873-881.	1.9	13
12	An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering. Journal of Biological Engineering, 2019, 13, 85.	2.0	76
13	Three-Dimensional Graphene Foams: Synthesis, Properties, Biocompatibility, Biodegradability, and Applications in Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 193-214.	2.6	121
14	Fabrication and characterization of novel ethyl cellulose-grafted-poly (É›-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. Journal of Biomaterials Applications, 2019, 33, 1128-1144.	1.2	44
15	Fabrication and in Vitro Evaluation of Nanocomposite Hydrogel Scaffolds Based on Gelatin/PCL–PEG–PCL for Cartilage Tissue Engineering. ACS Omega, 2019, 4, 449-457.	1.6	58
16	Significant role of cationic polymers in drug delivery systems. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-20.	1.9	40
17	Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. International Journal of Biological Macromolecules, 2018, 115, 83-89.	3.6	134
18	Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Development and Industrial Pharmacy, 2018, 44, 886-894.	0.9	87

Soodabeh Davaran

#	Article	IF	CITATIONS
19	Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 691-705.	1.9	162
20	Nanocomposite hydrogels for cartilage tissue engineering: a review. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 465-471.	1.9	91
21	Green and oneâ€pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Applied Organometallic Chemistry, 2018, 32, e4069.	1.7	68
22	Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1331-1348.	1.9	149
23	Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. International Journal of Biological Macromolecules, 2018, 108, 909-915.	3.6	89
24	Theranostic nanoparticles based on magnetic nanoparticles: design, preparation, characterization, and evaluation as novel anticancer drug carrier and MRI contrast agent. Drug Development and Industrial Pharmacy, 2018, 44, 1668-1678.	0.9	14
25	Bovine serum albumin: An efficient biomacromolecule nanocarrier for improving the therapeutic efficacy of chrysin. Journal of Molecular Liquids, 2018, 271, 639-646.	2.3	41
26	Fabrication of Three-Dimensional Scaffolds Based on Nano-biomimetic Collagen Hybrid Constructs for Skin Tissue Engineering. ACS Omega, 2018, 3, 8605-8611.	1.6	45
27	A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(Îμ-caprolactone)-Poly(ethylene glycol)-Poly(Îμ-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering. Tissue Engineering and Regenerative Medicine, 2018, 15, 735-750.	1.6	75
28	Folic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. International Journal of Biological Macromolecules, 2018, 117, 1125-1132.	3.6	82
29	Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system. Journal of Materials Research, 2018, 33, 1602-1611.	1.2	26
30	Biodegradable and biocompatible polymers for tissue engineering application: a review. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 185-192.	1.9	341
31	Preparation and characterization of PLGA-β-CD polymeric nanoparticles containing methotrexate and evaluation of their effects on T47D cell line. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 432-440.	1.9	27
32	Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 6-17.	1.9	93
33	Development and characterization of PLA-mPEG copolymer containing iron nanoparticle-coated carbon nanotubes for controlled delivery of Docetaxel. Polymer, 2017, 117, 117-131.	1.8	39
34	New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Research on Chemical Intermediates, 2017, 43, 7423-7442.	1.3	67
35	Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1797-1825.	1.9	164
36	Liposome-based drug co-delivery systems in cancer cells. Materials Science and Engineering C, 2017, 71, 1327-1341.	3.8	242

#	Article	IF	CITATIONS
37	An update on applications of nanostructured drug delivery systems in cancer therapy: a review. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1058-1068.	1.9	52
38	Triamcinolone acetonide–Eudragit®RS100 nanofibers and nanobeads: Morphological and physicochemical characterization. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 362-369.	1.9	25
39	The odontogenic differentiation of human dental pulp stem cells on hydroxyapatite-coated biodegradable nanofibrous scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 720-728.	1.8	40
40	A simple improved desolvation method for the rapid preparation of albumin nanoparticles. International Journal of Biological Macromolecules, 2016, 91, 703-709.	3.6	156
41	Preparation and characterization of novel electrospun poly(ε-caprolactone)-based nanofibrous scaffolds. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 504-509.	1.9	32
42	Synergistic antiproliferative effects of methotrexate-loaded smart silica nanocomposites in MDA-MB-231 breast cancer cells. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 603-609.	1.9	8
43	Application of electrospraying as a one-step method for the fabrication of triamcinolone acetonide-PLGA nanofibers and nanobeads. Colloids and Surfaces B: Biointerfaces, 2014, 123, 219-224.	2.5	46
44	Liposome: classification, preparation, and applications. Nanoscale Research Letters, 2013, 8, 102.	3.1	2,412
45	Comparison of Cytotoxic Activity of L778123 as a Farnesyltranferase Inhibitor and Doxorubicin against A549 and HT-29 Cell Lines. Advanced Pharmaceutical Bulletin, 2013, 3, 73-7.	0.6	10
46	Impact of Amino-Acid Coating on the Synthesis and Characteristics of Iron-Oxide Nanoparticles (IONs). Bulletin of the Korean Chemical Society, 2012, 33, 3957-3962.	1.0	134
47	Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnology, Science and Applications, 2012, 5, 13.	4.6	50
48	Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. International Journal of Nanomedicine, 2012, 7, 511.	3.3	87
49	Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Research Letters, 2012, 7, 480.	3.1	463
50	Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters, 2012, 7, 144.	3.1	948
51	Novel aldehyde-terminated dendrimers; synthesis and cytotoxicity assay. BioImpacts, 2012, 2, 97-103.	0.7	21
52	Synthesis and hydrolytic behaviour of 2-mercaptoethyl ibuprofenate–polyethylene glycol conjugate as a novel transdermal prodrug. Journal of Pharmacy and Pharmacology, 2010, 55, 513-517.	1.2	7
53	Preparation and physicochemical characterization of naproxen–PLGA nanoparticles. Colloids and Surfaces B: Biointerfaces, 2010, 81, 498-502.	2.5	87
54	Synthesis and Degradation Characteristics of Polyurethanes Containing AZO Derivatives of 5-Amino Salicylic Acid. Journal of Bioactive and Compatible Polymers, 2006, 21, 315-326.	0.8	14

#	Article	IF	CITATIONS
55	Adriamycin release from poly(lactide-co-glycolide)-polyethylene glycol nanoparticles: synthesis, and in vitro characterization. International Journal of Nanomedicine, 2006, 1, 535-539.	3.3	28
56	Release of 5-amino salicylic acid from acrylic type polymeric prodrugs designed for colon-specific drug delivery. Journal of Controlled Release, 1999, 58, 279-287.	4.8	83