Deepthi Sanagasetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11550106/publications.pdf

Version: 2024-02-01

		1162367	1372195	
16	572	8	10	
papers	citations	h-index	g-index	
16	16	16	1562	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Fibroblast transition to an endothelial "trans―state improves cell reprogramming efficiency. Scientific Reports, 2021, 11, 22605.	1.6	8
2	Hippo Pathway Effector Tead1 Induces Cardiac Fibroblast to Cardiomyocyte Reprogramming. Journal of the American Heart Association, 2021, 10, e022659.	1.6	20
3	Enhanced Generation of Induced Cardiomyocytes Using a Smallâ€Molecule Cocktail to Overcome Barriers to Cardiac Cellular Reprogramming. Journal of the American Heart Association, 2020, 9, e015686.	1.6	24
4	p63 Silencing induces reprogramming of cardiac fibroblasts into cardiomyocyte-like cells. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 556-565.e1.	0.4	12
5	CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nature Cell Biology, 2018, 20, 1370-1377.	4.6	80
6	Abstract 478: Small Molecule ICG-001, Sodium Butyrate, and Retinoic Acid Enhanced Direct Cardiac Reprogramming of Induced Cardiomyocytes (iCMs). Circulation Research, 2018, 123, .	2.0	0
7	Abstract 349: Sall4 Blocks Cardiac Trans-differentiation but Stimulates Cardiac Stem-like Cell (iPSC) Generation and Improve Post MI Function In Vivo. Circulation Research, 2018, 123, .	2.0	0
8	Abstract 470: Gata4, Mef2c and Tbx5 More Efficiently Transdifferentiate Endothelial Cells into Cardiomyocyte-like Cells Through Endothelial-Mesenchymal Transition Process. Circulation Research, 2018, 123, .	2.0	0
9	mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nature Communications, 2017, 8, 14338.	5. 8	318
10	Cardiac reprogramming factor Gata4 reduces postinfarct cardiac fibrosis through direct repression of the profibrotic mediator snail. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 1601-1610.e3.	0.4	20
11	In situ reprogramming to transdifferentiate fibroblasts into cardiomyocytes using adenoviral vectors: Implications for clinical myocardial regeneration. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 329-339.e3.	0.4	43
12	Abstract 192: Persistence of First Generation Adenovirus in the Myocardium: Refuting Old Dogma. Circulation Research, 2017, 121, .	2.0	0
13	MiRâ€590 Promotes Transdifferentiation of Porcine and Human Fibroblasts Toward a Cardiomyocyteâ€Like Fate by Directly Repressing Specificity Protein 1. Journal of the American Heart Association, 2016, 5, .	1.6	46
14	Abstract 363: In Situ Cardiac Cellular Reprogramming Using Adenoviral Vectors: Implication for Clinical Myocardial Regeneration. Circulation Research, 2016, 119, .	2.0	0
15	Abstract 33: Unlocking Reprogramming Capability: Silencing Antiplasticity Gene p63 Enhances the Reprogramming of Fibroblasts into Induced Cardiomyocytes. Circulation Research, 2016, 119, .	2.0	1
16	Abstract 37: Mir-590 Promotes Transdifferentiation of Porcine and Human Fibroblasts Towards a Cardiomyocyte-like Fate by Directly Repressing Specificity Protein 1 (Sp1). Circulation Research, 2016, 119, .	2.0	0