Parveen Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11549973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of Site Amplification Using Borehole and Surface Data: Variability of Site Effect Estimation from Different Phases of the Accelerogram. Lecture Notes in Civil Engineering, 2022, , 317-331.	0.3	0
2	Strong Motion Modelling of the 1999 Izmit Earthquake Using Site Effect in a Semi-Empirical Technique: A More Realistic Approach. Pure and Applied Geophysics, 2022, 179, 483-497.	0.8	5
3	Modelling of 2016 Kumamoto earthquake by integrating site effect in semi-empirical technique. Natural Hazards, 2022, 111, 1931.	1.6	0
4	Emerging techniques to simulate strong ground motion. , 2021, , 33-46.		2
5	A review on geophysical parameters comparison in Garhwal and Kumaun Himalaya region, India. , 2021, , 95-103.		1
6	Coseismic landslide hazard assessment for the future scenario earthquakes in the Kumaun Himalaya, India. Bulletin of Engineering Geology and the Environment, 2021, 80, 5219-5235.	1.6	20
7	Strong-Motion Simulation of the 1988 Indo-Burma and Scenario Earthquakes in NE India by Integrating Site Effects in a Semi-Empirical Technique. Pure and Applied Geophysics, 2021, 178, 2839-2854.	0.8	5
8	Characterization of shear wave attenuation and site effects in the Garhwal Himalaya, India from inversion of strong motion records. Journal of Earth System Science, 2021, 130, 1.	0.6	2
9	Strong ground motion simulation techniques—a review in world context. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	7
10	Role of site effect for the evaluation of attenuation characteristics of P, S and coda waves in Kinnaur region, NW Himalaya. Journal of Earth System Science, 2020, 129, 1.	0.6	2
11	Spatial variability studies of attenuation characteristics of Qα and Qβ in Kumaon and Garhwal region of NW Himalaya. Natural Hazards, 2020, 103, 1219-1237.	1.6	11
12	Strong motion generation area modelling of the 2008 Iwate earthquake, Japan using modified semi-empirical technique. Journal of Earth System Science, 2019, 128, 1.	0.6	4
13	Seismically induced snow avalanches at Nubra–Shyok region of Western Himalaya, India. Natural Hazards, 2019, 99, 843-855.	1.6	8
14	Modeling of 2011 IndoNepal Earthquake and Scenario Earthquakes in the Kumaon Region and Comparative Attenuation Study Using PGA Distribution with the Garhwal Region. Pure and Applied Geophysics, 2019, 176, 4687-4700.	0.8	11
15	Modelling of strong motion generation areas for a great earthquake in central seismic gap region of Himalayas using the modified semi-empirical approach. Journal of Earth System Science, 2019, 128, 1.	0.6	11
16	Determination of site effect and anelastic attenuation at Kathmandu, Nepal Himalaya region and its use in estimation of source parameters of 25 April 2015 Nepal earthquake MwÂ=Â7.8 and its aftershocks including the 12 May 2015 MwÂ=Â7.3 event. Natural Hazards, 2018, 91, 1003-1023.	1.6	7
17	Estimation and applicability of attenuation characteristics for source parameters and scaling relations in the Garhwal Kumaun Himalaya region, India. Journal of Asian Earth Sciences, 2018, 159, 42-59.	1.0	15
18	Simulation of Strong Ground Motion of the 2009 Bhutan Earthquake Using Modified Semi-Empirical Technique. Pure and Applied Geophysics, 2017, 174, 4343-4356.	0.8	10

Parveen Kumar

#	Article	IF	CITATIONS
19	Source model estimation of the 2005 Kyushu Earthquake, Japan using Modified Semi Empirical Technique. Journal of Asian Earth Sciences, 2017, 147, 240-253.	1.0	8
20	Emergence of the semi-empirical technique of strong ground motion simulation: A review. Journal of the Geological Society of India, 2017, 89, 719-722.	0.5	9
21	Variable anelastic attenuation and site effect in estimating source parameters of various major earthquakes including M w 7.8 Nepal and M w 7.5 Hindu kush earthquake by using far-field strong-motion data. International Journal of Earth Sciences, 2017, 106, 2371-2386.	0.9	12
22	Attenuation of coda waves in the Nubra-Siachen region, Himalaya, India. Journal of the Geological Society of India, 2017, 89, 497-502.	0.5	2
23	Three-Dimensional Attenuation Structure of the Kumaon Himalayas, India, Based on Inversion of Strong Motion Data. Pure and Applied Geophysics, 2015, 172, 333-358.	0.8	8
24	Modeling of strong motion generation areas of the Niigata, Japan, earthquake of 2007 using modified semi-empirical technique. Natural Hazards, 2015, 77, 933-957.	1.6	15
25	Detailed Attenuation Study of Shear Waves in the Kumaon Himalaya, India, Using the Inversion of Strongâ€Motion Data. Bulletin of the Seismological Society of America, 2015, 105, 1836-1851.	1.1	23
26	Coda wave attenuation characteristics for Kumaon and Garhwal Himalaya, India. Natural Hazards, 2015, 75, 1057-1074.	1.6	12
27	Use of site amplification and anelastic attenuation for the determination of source parameters of the Sikkim earthquake of September 18, 2011, using far-field strong-motion data. Natural Hazards, 2014, 70, 217-235.	1.6	7
28	Effect of frequency-dependent radiation pattern in the strong motion simulation of the 2011 Tohoku earthquake, Japan, using modified semi-empirical method. Natural Hazards, 2014, 73, 1499-1521.	1.6	19
29	Modeling of strong motion generation area of the Uttarkashi earthquake using modified semiempirical approach. Natural Hazards, 2014, 73, 2041-2066.	1.6	20
30	Attenuation Tomography Based on Strong Motion Data: Case Study of Central Honshu Region, Japan. Pure and Applied Geophysics, 2013, 170, 2087-2106.	0.8	6
31	Implications of Site Effects and Attenuation Properties for Estimation of Earthquake Source Characteristics in Kinnaur Himalaya, India. Pure and Applied Geophysics, 0, , 1.	0.8	1