Jing-Bo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1154947/publications.pdf

Version: 2024-02-01

23 papers	167 citations	1307594 7 h-index	1199594 12 g-index
23	23	23	159
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A comparative study on the autoignition characteristics of cyclopropane and propane at high temperatures. Combustion and Flame, 2022, 237, 111881.	5.2	9
2	Numerical Investigations on the Molecular Reaction Model for Thermal Cracking of n-Decane at Supercritical Pressures. ACS Omega, 2022, 7, 22351-22362.	3 . 5	3
3	Theoretical study of hydrogen abstraction from quadricyclane by small radicals. Computational and Theoretical Chemistry, 2021, 1200, 113232.	2.5	1
4	An experimental and kinetic modeling study on the autoignition characteristics of indene. Combustion and Flame, 2021, 230, 111448.	5 . 2	4
5	A theoretical study of \hat{l}^2 -hydroxybutenyl with O2 on the HOC4H6OO \hat{A} - potential energy surface. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	O
6	The kinetic model of cyclohexene–air combustion over a wide temperature range. RSC Advances, 2021, 11, 39907-39916.	3.6	3
7	Efficient and Tunable 1.6- $\hat{1}$ /4m MgO:PPLN Optical Parametric Oscillator Pumped by Nd:YVO4/YVO4 Raman Laser. IEEE Photonics Journal, 2020, 12, 1-7.	2.0	3
8	An experimental and modeling study of ethylene–air combustion over a wide temperature range. Combustion and Flame, 2020, 221, 20-40.	5 . 2	22
9	Development of a detailed pyrolysis mechanism for C 1 –C 4 hydrocarbons under a wide range of temperature and pressure. International Journal of Chemical Kinetics, 2020, 52, 796-821.	1.6	2
10	Rate rules for hydrogen abstraction reaction kinetics of polycyclic aromatic hydrocarbons and vinyl radical. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	6
11	Rate rules for hydrogen abstraction reaction kinetics of alkenes from allylic sites by HO2 radical. Computational and Theoretical Chemistry, 2020, 1179, 112795.	2.5	4
12	Hydrogen evolution reaction activity related to the facet-dependent electrocatalytic performance of NiCoP from first principles. RSC Advances, 2019, 9, 11755-11761.	3.6	26
13	Pressure-dependent rate rules for cycloaddition, intramolecular H-shift, and concerted elimination reactions of alkenyl peroxy radicals at low temperature. Physical Chemistry Chemical Physics, 2019, 21, 10693-10705.	2.8	14
14	Theoretical study of hydrogen abstraction by small radicals from cyclohexane-carbonyl-hydroperoxide. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	1
15	Pressure-dependent rate rules for intramolecular H-migration reactions of normal-alkyl cyclohexylperoxy radicals. Combustion and Flame, 2019, 204, 176-188.	5. 2	24
16	Relationship between Energetic Performance and Clustering Effects on Incremental Nitramine Groups: A Theoretical Perspective. Journal of Physical Chemistry A, 2019, 123, 742-749.	2.5	6
17	Calculation of the rate constants for concerted elimination reaction class of hydroperoxyl-alkyl-peroxyl radicals. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	6
18	Investigations of Chemical Kinetic Mechanisms for Low-to-medium Temperature Ignition of Ethylene. Acta Chimica Sinica, 2017, 75, 375.	1.4	3

#	Article	IF	CITATIONS
19	Mechanism construction and simulation for high-temperature combustion of n-propylcyclohexane. Chemical Research in Chinese Universities, 2014, 30, 480-488.	2.6	19
20	Molecular orientations at interfaces by extended polarizable continuum model. International Journal of Quantum Chemistry, 2011, 111, 2187-2195.	2.0	0
21	Polarizable continuum model associated with the self-consistent-reaction field for molecular adsorbates at the interface. Physical Chemistry Chemical Physics, 2010, 12, 207-214.	2.8	2
22	Thermodynamics for nonequilibrium solvation and numerical evaluation of solvent reorganization energy. Science in China Series B: Chemistry, 2008, 51, 1246-1256.	0.8	8
23	Solvent Reorganization Energy and Electronic Coupling for Intramolecular Electron Transfer in Biphenyl-Acceptor Anion Radicals. Chinese Journal of Chemical Physics, 2008, 21, 45-54.	1.3	1