Martine Kolf-Clauw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1154880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicology and Applied Pharmacology, 2009, 237, 41-48.	1.3	280
2	Toxicity of Deoxynivalenol and Its Acetylated Derivatives on the Intestine: Differential Effects on Morphology, Barrier Function, Tight Junction Proteins, and Mitogen-Activated Protein Kinases. Toxicological Sciences, 2012, 130, 180-190.	1.4	208
3	New insights into mycotoxin mixtures: The toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. Toxicology and Applied Pharmacology, 2013, 272, 191-198.	1.3	174
4	The low intestinal and hepatic toxicity of hydrolyzed fumonisin B1 correlates with its inability to alter the metabolism of sphingolipids. Biochemical Pharmacology, 2012, 83, 1465-1473.	2.0	107
5	The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: Interest of exÂvivo models as an alternative to inÂvivo experiments. Toxicon, 2013, 66, 31-36.	0.8	90
6	Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: Histopathological analysis. Toxicology in Vitro, 2009, 23, 1580-1584.	1.1	87
7	Regulatory identification of BPA as an endocrine disruptor: Context and methodology. Molecular and Cellular Endocrinology, 2018, 475, 4-9.	1.6	83
8	Subchronic dietary exposure of rats to cadmium alters the metabolism of metals essential to bone health. Food and Chemical Toxicology, 2004, 42, 1203-1210.	1.8	64
9	Inhibition of 7-dehydrocholesterol reductase by the teratogen AY9944: A rat model for Smith-Lemli-Opitz syndrome. Teratology, 1996, 54, 115-125.	1.7	63
10	Nivalenol Has a Greater Impact than Deoxynivalenol on Pig Jejunum Mucosa in Vitro on Explants and in Vivo on Intestinal Loops. Toxins, 2015, 7, 1945-1961.	1.5	53
11	Cholesterol biosynthesis inhibited by BM15.766 induces holoprosencephaly in the rat. Teratology, 1997, 56, 188-200.	1.7	49
12	New insights into the organ-specific adverse effects of fumonisin B1: comparison between lung and liver. Archives of Toxicology, 2015, 89, 1619-1629.	1.9	47
13	Increased functional expression of P-glycoprotein in Caco-2 TC7 cells exposed long-term to cadmium. Toxicology in Vitro, 2005, 19, 439-447.	1.1	39
14	The emerging mycotoxin, enniatin B1, down-modulates the gastrointestinal toxicity of T-2 toxin in vitro on intestinal epithelial cells and ex vivo on intestinal explants. Archives of Toxicology, 2013, 87, 2233-2241.	1.9	38
15	Cadmium Uptake and Transepithelial Transport in Control and Long-Term Exposed Caco-2 Cells: The Role of Metallothionein. Toxicology and Applied Pharmacology, 1999, 160, 76-85.	1.3	35
16	Intestinal toxicity of the type B trichothecene mycotoxin fusarenon-X: whole transcriptome profiling reveals new signaling pathways. Scientific Reports, 2017, 7, 7530.	1.6	31
17	Conclusions of the French Food Safety Agency on the toxicity of bisphenol A. International Journal of Hygiene and Environmental Health, 2011, 214, 271-275.	2.1	30
18	The mycotoxins deoxynivalenol and nivalenol show inÂvivo synergism on jejunum enterocytes apoptosis. Food and Chemical Toxicology, 2016, 87, 45-54.	1.8	30

MARTINE KOLF-CLAUW

#	Article	IF	CITATIONS
19	Cadmium accumulation and interactions with zinc, copper, and manganese, analysed by ICP-MS in a long-term Caco-2 TC7 cell model. BioMetals, 2006, 19, 473-481.	1.8	28
20	Alteration of mammary gland development by bisphenol a and evidence of a mode of action mediated through endocrine disruption. Molecular and Cellular Endocrinology, 2018, 475, 29-53.	1.6	27
21	Absence of ventral cell populations in the developing brain in a rat model of the Smith-Lemli-Opitz syndrome. , 1999, 87, 207-216.		26
22	Implication of distinct proteins in cadmium uptake and transport by intestinal cells HT-29. Cell Biology and Toxicology, 2002, 18, 409-423.	2.4	17
23	Infant total diet study in France: Exposure to substances migrating from food contact materials. Environment International, 2021, 149, 106393.	4.8	17
24	Abnormal cholesterol biosynthesis as in Smith-Lemliopitz syndrome disrupts normal skeletal development in the rat. Translational Research, 1998, 131, 222-227.	2.4	16
25	The Effect on the Intestine of Some Fungal Toxins: The Trichothecenes. Current Immunology Reviews, 2012, 8, 193-208.	1.2	16
26	Comparative Study of Cadmium Transfer in Ewe and Cow Milks During Rennet and Lactic Curds Preparation. Archives of Environmental Contamination and Toxicology, 1999, 37, 389-395.	2.1	13
27	Dietary exposure to perfluoroalkyl acids, brominated flame retardants and health risk assessment in the French infant total diet study. Food and Chemical Toxicology, 2019, 131, 110561.	1.8	13
28	Optimized Simultaneous Determination of Several Elements in Human Intestinal Caco-2 TC7 Cells by Inductively Coupled Plasma-Mass Spectrometry after Closed Vessel Microwave Digestion. Journal of AOAC INTERNATIONAL, 2003, 86, 1225-1231.	0.7	12
29	FELASA accreditation of education and training courses in laboratory animal science according to the Directive 2010/63/EU. Laboratory Animals, 2019, 53, 137-147.	0.5	8
30	Variations in zearalenone activation in avian food species. Food and Chemical Toxicology, 2008, 46, 1467-1473.	1.8	6
31	Devenir du cadmium du lait de brebis dans la crÃ me et les caillés présure ou lactique. Dairy Science and Technology, 1998, 78, 689-698.	0.9	5
32	Safety assessment of the substance †̃Tungsten Oxide' for use in food contact materials. EFSA Journal, 2017, 15, e04661.	0.9	4
33	Safety assessment of the active substances carboxymethylcellulose, acetylated distarch phosphate, bentonite, boric acid and aluminium sulfate, for use in active food contact materials. EFSA Journal, 2018, 16, e05121.	0.9	4
34	Safety assessment of the substance, titanium dioxide surface treated with fluorideâ€modified alumina, for use in food contact materials. EFSA Journal, 2019, 17, e05737.	0.9	3
35	Safety assessment of the active substance selenium nanoparticles, for use in active food contact materials. EFSA Journal, 2018, 16, e05115.	0.9	2
36	SUPERSEDED: Safety assessment of the substance poly((R)â€3â€hydroxybutyrateâ€coâ€(R)â€3â€hydroxyhexanc for use in food contact materials. EFSA Journal, 2018, 16, e05326.	oate) 0.9	2

MARTINE KOLF-CLAUW

#	Article	IF	CITATIONS
37	Safety assessment of the active substance polyacrylic acid, sodium salt, crossâ€linked, for use in active food contact materials. EFSA Journal, 2018, 16, e05448.	0.9	2
38	Safety assessment of the substance, montmorillonite clay modified with hexadecyltrimethylammonium bromide, for use in food contact materials. EFSA Journal, 2019, 17, e05552.	0.9	2
39	Safety assessment of the substance poly((R)â€3â€hydroxybutyrateâ€coâ€(R)â€3â€hydroxyhexanoate) for use in contact materials. EFSA Journal, 2019, 17, e05551.	food 0.9	2
40	Devenir du cadmium du lait de chèvre dans la crème et les caillés présure et lactique. Dairy Science and Technology, 2000, 80, 277-288.	0.9	2
41	Safety assessment of the substance 1,2,3,4â€ŧetrahydronaphthaleneâ€2,6â€dicarboxylic acid, dimethyl ester for use in food contact materials. EFSA Journal, 2017, 15, e04840.	0.9	1
42	Safety assessment of the substance Ln 1,4â€benzene dicarboxylic acid (with LnÂ=ÂLa, Eu, Gd, Tb) for use in food contact materials. EFSA Journal, 2018, 16, e05449.	0.9	1
43	Safety assessment of the substance N,Nâ€bis(2â€hydroxyethyl)stearylamine partially esterified with saturated C16/C18 fatty acids, for use in food contact materials. EFSA Journal, 2020, 18, e06047.	0.9	1
44	Safety assessment of the substance (butadiene, styrene, methyl methacrylate, butyl acrylate) copolymer crossâ€linked with divinylbenzene or 1,3â€butanediol dimethacrylate for use in food contact materials. EFSA Journal, 2016, 14, e04637.	0.9	0
45	Safety assessment of the mixture of methylâ€branched and linear C14–C18 alkanamides, derived from fatty acids, for use in food contact materials. EFSA Journal, 2017, 15, e04724.	0.9	0
46	Safety assessment of the substance [3â€(2,3â€epoxypropoxy)propyl]trimethoxy silane, for use in food contact materials. EFSA Journal, 2017, 15, e05014.	0.9	0
47	Safety assessment of the substance phosphorous acid, mixed 2,4â€bis(1,1â€dimethylpropyl)phenyl and 4â€(1,1â€dimethylpropyl)phenyl triesters for use in food contact materials. EFSA Journal, 2017, 15, e04841.	0.9	0
48	Safety assessment of the substance dimethyl carbonate for use in food contact materials. EFSA Journal, 2017, 15, e04901.	0.9	0
49	Safety assessment of the substance isobutane, for use in food contact materials. EFSA Journal, 2018, 16, e05116.	0.9	0
50	Safety assessment of the substance trimellitic acid, tris (2â€ethylhexyl) ester, for use in food contact materials. EFSA Journal, 2019, 17, e05864.	0.9	0