
William H Romme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11547214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15144-15148.	3.3	1,779
2	Cross-scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions. BioScience, 2008, 58, 501-517.	2.2	1,410
3	The Interaction of Fire, Fuels, and Climate across Rocky Mountain Forests. BioScience, 2004, 54, 661.	2.2	621
4	Fire and Landscape Diversity in Subalpine Forests of Yellowstone National Park. Ecological Monographs, 1982, 52, 199-221.	2.4	596
5	Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13165-13170.	3.3	536
6	Landscape dynamics in crown fire ecosystems. Landscape Ecology, 1994, 9, 59-77.	1.9	482
7	Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. Journal of Vegetation Science, 1994, 5, 731-742.	1.1	453
8	A revised concept of landscape equilibrium: Disturbance and stability on scaled landscapes. Landscape Ecology, 1993, 8, 213-227.	1.9	433
9	EFFECTS OF FIRE SIZE AND PATTERN ON EARLY SUCCESSION IN YELLOWSTONE NATIONAL PARK. Ecological Monographs, 1997, 67, 411-433.	2.4	429
10	Expansion of the US wildland–urban interface. Landscape and Urban Planning, 2007, 83, 340-354.	3.4	385
11	Historical and Modern Disturbance Regimes, Stand Structures, and Landscape Dynamics in Piñon–Juniper Vegetation of the Western United States. Rangeland Ecology and Management, 2009, 62, 203-222.	1.1	285
12	Surprises and lessons from the 1988 Yellowstone fires. Frontiers in Ecology and the Environment, 2003, 1, 351-358.	1.9	284
13	Prefire heterogeneity, fire severity, and early postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming. International Journal of Wildland Fire, 1999, 9, 21.	1.0	271
14	Historical Perspective on the Yellowstone Fires of 1988. BioScience, 1989, 39, 695-699.	2.2	267
15	Aspen, Elk, and Fire in Northern Yellowstone Park. Ecology, 1995, 76, 2097-2106.	1.5	264
16	Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landscape Ecology, 2013, 28, 1081-1097.	1.9	245
17	Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests?. Ecological Monographs, 2011, 81, 3-24.	2.4	237
18	Fire Frequency and Subalpine Forest Succession Along a Topographic Gradient in Wyoming. Ecology, 1981, 62, 319-326.	1.5	224

William H Romme

#	Article	IF	CITATIONS
19	Carbon Storage on Landscapes with Stand-replacing Fires. BioScience, 2006, 56, 598.	2.2	206
20	Landscape Diversity: The Concept Applied to Yellowstone Park. BioScience, 1982, 32, 664-670.	2.2	174
21	Are Large, Infrequent Disturbances Qualitatively Different from Small, Frequent Disturbances?. Ecosystems, 1998, 1, 524-534.	1.6	168
22	Mountain Pine Beetle Outbreaks in the Rocky Mountains: Regulators of Primary Productivity?. American Naturalist, 1986, 127, 484-494.	1.0	159
23	Implications of Global Climate Change for Biogeographic Patterns in the Greater Yellowstone Ecosystem. Conservation Biology, 1991, 5, 373-386.	2.4	145
24	Landscape Patterns of Sapling Density, Leaf Area, and Aboveground Net Primary Production in Postfire Lodgepole Pine Forests, Yellowstone National Park (USA). Ecosystems, 2004, 7, 751-775.	1.6	140
25	Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4782-4789.	3.3	134
26	Simulating Winter Interactions Among Ungulates, Vegetation, and Fire in Northern Yellowstone Park. , 1994, 4, 472-496.		128
27	Twenty Years After the 1988 Yellowstone Fires: Lessons About Disturbance and Ecosystems. Ecosystems, 2011, 14, 1196-1215.	1.6	126
28	THE INFLUENCE OF FIRE INTERVAL AND SEROTINY ON POSTFIRE LODGEPOLE PINE DENSITY IN YELLOWSTONE NATIONAL PARK. Ecology, 2003, 84, 2967-2978.	1.5	124
29	A landscape simulation model of winter foraging by large ungulates. Ecological Modelling, 1993, 69, 163-184.	1.2	122
30	CLIMATIC AND HUMAN INFLUENCES ON FIRE REGIMES OF THE SOUTHERN SAN JUAN MOUNTAINS, COLORADO, USA. Ecology, 2004, 85, 1708-1724.	1.5	115
31	VARIABILITY AND CONVERGENCE IN STAND STRUCTURAL DEVELOPMENT ON A FIRE-DOMINATED SUBALPINE LANDSCAPE. Ecology, 2005, 86, 643-654.	1.5	110
32	Title is missing!. Landscape Ecology, 2001, 16, 327-349.	1.9	109
33	Postfire changes in forest carbon storage over a 300â€year chronosequence of <i>Pinus contorta</i> â€dominated forests. Ecological Monographs, 2013, 83, 49-66.	2.4	100
34	Post-fire aspen seedling recruitment across the Yellowstone (USA) Landscape. Landscape Ecology, 2003, 18, 127-140.	1.9	97
35	Landscape-scale heterogeneity in lodgepole pine serotiny. Canadian Journal of Forest Research, 1994, 24, 897-903.	0.8	95
36	Winter Habitat Use by Large Ungulates Following Fire in Northern Yellowstone National Park. , 1995, 5, 744-755.		93

WILLIAM H ROMME

#	Article	IF	CITATIONS
37	Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglasâ€fir forests. Ecology, 2013, 94, 2475-2486.	1.5	90
38	ESTABLISHMENT, PERSISTENCE, AND GROWTH OF ASPEN (POPULUS TREMULOIDES) SEEDLINGS IN YELLOWSTONE NATIONAL PARK. Ecology, 2005, 86, 404-418.	1.5	88
39	FIRE HISTORY AND VEGETATION PATTERN IN MESA VERDE NATIONAL PARK, COLORADO, USA. , 2000, 10, 1666-1680.		79
40	Deterministic and stochastic processes lead to divergence in plant communities 25Âyears after the 1988 Yellowstone fires. Ecological Monographs, 2016, 86, 327-351.	2.4	75
41	Bark beetle effects on fuel profiles across a range of stand structures in Douglasâ€fir forests of Greater Yellowstone. Ecological Applications, 2013, 23, 3-20.	1.8	73
42	Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions. Ecological Applications, 2014, 24, 1608-1625.	1.8	73
43	Historical and recent fire regimes in Piñon–Juniper woodlands on Mesa Verde, Colorado, USA. Forest Ecology and Management, 2004, 198, 269-289.	1.4	69
44	Twentyâ€four years after the Yellowstone Fires: Are postfire lodgepole pine stands converging in structure and function?. Ecology, 2016, 97, 1260-1273.	1.5	66
45	Was Aldo Leopold Right about the Kaibab Deer Herd?. Ecosystems, 2006, 9, 227-241.	1.6	63
46	Predicting and mitigating weed invasions to restore natural post-fire succession in Mesa Verde National Park, Colorado, USA. International Journal of Wildland Fire, 2006, 15, 247.	1.0	56
47	RECONCILING DIVERGENT INTERPRETATIONS OF QUAKING ASPEN DECLINE ON THE NORTHERN COLORADO FRONT RANGE. , 2007, 17, 1296-1311.		49
48	Title is missing!. Landscape Ecology, 2003, 18, 427-439.	1.9	48
49	Variability in Leaf Area and Stemwood Increment Along a 300-year Lodgepole Pine Chronosequence. Ecosystems, 2005, 8, 48-61.	1.6	47
50	Shifting ecological filters mediate postfire expansion of seedling aspen (Populus tremuloides) in Yellowstone. Forest Ecology and Management, 2016, 362, 218-230.	1.4	44
51	Invasion of Subalpine Meadows by Lodgepole Pine in Yellowstone National Park, Wyoming, U.S.A Arctic and Alpine Research, 1993, 25, 382.	1.3	42
52	The Yellowstone Fires. Scientific American, 1989, 261, 36-46.	1.0	38
53	Cone production in young post-fire Pinus contorta stands in Greater Yellowstone (USA). Forest Ecology and Management, 2007, 242, 119-126.	1.4	34
54	Secondary Plant Compounds in Seedling and Mature Aspen (Populus tremuloides) in Yellowstone National Park, Wyoming. American Midland Naturalist, 2001, 145, 299-308.	0.2	30

WILLIAM H ROMME

#	Article	IF	CITATIONS
55	Evaluating post-outbreak management effects on future fuel profiles and stand structure in bark beetle-impacted forests of Greater Yellowstone. Forest Ecology and Management, 2013, 303, 160-174.	1.4	27
56	Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance. PLoS ONE, 2012, 7, e50597.	1.1	27
57	Predictors of bark beetle activity and scale-dependent spatial heterogeneity change during the course of an outbreak in a subalpine forest. Landscape Ecology, 2014, 29, 97-109.	1.9	26
58	Aboveground Net Primary Production and Leaf-Area Index in Early Postfire Vegetation in Yellowstone National Park. Ecosystems, 1999, 2, 88-94.	1.6	25
59	Variation in Aboveground Cover Influences Soil Nitrogen Availability at Fine Spatial Scales Following Severe Fire in Subalpine Conifer Forests. Ecosystems, 2011, 14, 1081-1095.	1.6	25
60	Fire History of Piñon-juniper Woodlands on Navajo Point, Glen Canyon National Recreation Area. Natural Areas Journal, 2008, 28, 26-36.	0.2	24
61	Variation in foliar nitrogen and aboveground net primary production in young postfire lodgepole pine. Canadian Journal of Forest Research, 2009, 39, 1024-1035.	0.8	24
62	Tree recruitment in relation to climate and fire in northern Mexico. Ecology, 2014, 95, 197-209.	1.5	24
63	Genetic variation in postfire aspen seedlings in Yellowstone National Park. Molecular Ecology, 1999, 8, 1769-1780.	2.0	23
64	Landscape variation in tree regeneration and snag fall drive fuel loads in 24â€year old postâ€fire lodgepole pine forests. Ecological Applications, 2016, 26, 2424-2438.	1.8	22
65	Does inorganic nitrogen limit plant growth 3–5 years after fire in a Wyoming, USA, lodgepole pine forest?. Forest Ecology and Management, 2009, 257, 829-835.	1.4	21
66	Lodgepole Pine Seed Germination Following Tree Death from Mountain Pine Beetle Attack in Colorado, USA. American Midland Naturalist, 2011, 165, 446-451.	0.2	20
67	Landscape Heterogeneity and Ungulate Dynamics: What Spatial Scales are Important?. , 1997, , 331-348.		20
68	Germination Ecology of Some Common Forest Herbs in Yellowstone National Park, Wyoming, U.S.A Arctic and Alpine Research, 1995, 27, 407.	1.3	19
69	Spatial Variation in Postfire Cheatgrass: Dinosaur National Monument, USA. Fire Ecology, 2012, 8, 38-56.	1.1	19
70	Influence of coarse wood and pine saplings on nitrogen mineralization and microbial communities in young post-fire Pinus contorta. Forest Ecology and Management, 2008, 256, 59-67.	1.4	18
71	Climate and land-use effects on wildfire in northern Mexico, 1650–2010. Forest Ecology and Management, 2014, 325, 49-59.	1.4	16
72	Structural and regenerative changes in old-growth piñon–juniper woodlands following drought-induced mortality. Forest Ecology and Management, 2015, 341, 18-29.	1.4	16

#	Article	IF	CITATIONS
73	Simulated fire behaviour in young, postfire lodgepole pine forests. International Journal of Wildland Fire, 2017, 26, 852.	1.0	15

Foliar nitrogen patterns following stand-replacing fire in lodgepole pine (Pinus contorta var.) Tj ETQq0 0 0 rgBT /Overlock 10 If 50 702 T

75	Effects of Fire Size and Pattern on Early Succession in Yellowstone National Park. Ecological Monographs, 1997, 67, 411.	2.4	14
76	Beetle-infested forests are not "destroyed― Frontiers in Ecology and the Environment, 2009, 7, 71-72.	1.9	11
77	Age structure of aspen forests on the Uncompahgre Plateau, Colorado. Canadian Journal of Forest Research, 2014, 44, 836-841.	0.8	10
78	Historical and Modern Fire Regimes in Piñon-Juniper Woodlands, Dinosaur National Monument, United States. Rangeland Ecology and Management, 2017, 70, 348-355.	1.1	9
79	Feast not famine: Nitrogen pools recover rapidly in 25â€yrâ€old postfire lodgepole pine. Ecology, 2019, 100, e02626.	1.5	9
80	Ten Years After the 1988 Yellowstone Fires: Is Restoration Needed?. , 2004, , 318-361.		9
81	Effects of Recent Wildfires in Piñon-Juniper Woodlands of Mesa Verde National Park, Colorado, USA. Natural Areas Journal, 2021, 41, .	0.2	7
82	The Importance of Multiscale Spatial Heterogeneity in Wildland Fire Management and Research. , 2005, , 353-366.		5
83	Yellowstone Fires. Science, 1999, 283, 175c-175.	6.0	3
84	Insights from recent fires into juniper savanna dynamics at Wupatki National Monument, Arizona, USA. Rangelands, 2021, 43, 9-16.	0.9	1
85	News of interest to landscape ecologists. Landscape Ecology, 1988, 1, 253-254.	1.9	0
86	Emergence of Cross-Scale Structural and Functional Processes in Ecosystem Science. , 2021, , 140-201.		0
87	Evolution of the Systems Ecology Paradigm in Managing Ecosystems. , 2021, , 202-244.		0