
Charlotte Madore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11546951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The microbiota restrains neurodegenerative microglia in a model of amyotrophic lateral sclerosis. Microbiome, 2022, 10, 47.	11.1	17
2	Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities. Molecular Psychiatry, 2021, 26, 1808-1831.	7.9	44
3	Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron, 2021, 109, 1657-1674.e7.	8.1	151
4	Microglia, Lifestyle Stress, and Neurodegeneration. Immunity, 2020, 52, 222-240.	14.3	174
5	Neuropathobiology of COVID-19: The Role for Glia. Frontiers in Cellular Neuroscience, 2020, 14, 592214.	3.7	119
6	CSF1R signaling is a regulator of pathogenesis in progressive MS. Cell Death and Disease, 2020, 11, 904.	6.3	74
7	Loss of homeostatic microglial phenotype in CSF1R-related Leukoencephalopathy. Acta Neuropathologica Communications, 2020, 8, 72.	5.2	42
8	Complement 3+-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathologica Communications, 2019, 7, 83.	5.2	84
9	Opposite microglial activation stages upon loss of <scp>PGRN</scp> or <scp>TREM</scp> 2 result in reduced cerebral glucose metabolism. EMBO Molecular Medicine, 2019, 11, .	6.9	87
10	Microglial Phenotypes and Functions in Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a028993.	6.2	73
11	Differential contribution of microglia and monocytes in neurodegenerative diseases. Journal of Neural Transmission, 2018, 125, 809-826.	2.8	84
12	TREMendous 2 Be Social. Immunity, 2018, 48, 842-843.	14.3	3
13	<scp>TREM</scp> 2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Reports, 2017, 18, 1186-1198.	4.5	240
14	Microglial confetti party. Nature Neuroscience, 2017, 20, 762-763.	14.8	4
15	The brain parenchyma has a type I interferon response that can limit virus spread. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E95-E104.	7.1	49
16	The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity, 2017, 47, 566-581.e9.	14.3	1,741
17	Activation of microglia by retroviral infection correlates with transient clearance of prions from the brain but does not change incubation time. Brain Pathology, 2017, 27, 590-602.	4.1	19
18	Neuroinflammation in Autism: Plausible Role of Maternal Inflammation, Dietary Omega 3, and Microbiota. Neural Plasticity, 2016, 2016, 1-15.	2.2	88

CHARLOTTE MADORE

#	Article	IF	CITATIONS
19	Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain, Behavior, and Immunity, 2016, 57, 79-93.	4.1	139
20	N-3 polyunsaturated fatty acid and neuroinflammation in aging and Alzheimer's disease. Nutrition and Aging (Amsterdam, Netherlands), 2015, 3, 33-47.	0.3	13
21	Microglia in neuronal plasticity: Influence of stress. Neuropharmacology, 2015, 96, 19-28.	4.1	122
22	Dietary n-3 PUFAs Deficiency Increases Vulnerability to Inflammation-Induced Spatial Memory Impairment. Neuropsychopharmacology, 2015, 40, 2774-2787.	5.4	79
23	Transgenic Increase in n-3/n-6 Fatty Acid Ratio Protects Against Cognitive Deficits Induced by an Immune Challenge through Decrease of Neuroinflammation. Neuropsychopharmacology, 2015, 40, 525-536.	5.4	74
24	Nutritional n-3 PUFAs deficiency during perinatal periods alters brain innate immune system and neuronal plasticity-associated genes. Brain, Behavior, and Immunity, 2014, 41, 22-31.	4.1	119
25	N-3 Polyunsaturated Fatty Acid and Neuroinflammation in Aging: Role in Cognition. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 91-112.	0.6	Ο
26	Nutritional n-3 polyunsaturated fatty acids deficiency alters cannabinoid receptor signaling pathway in the brain and associated anxiety-like behavior in mice. Journal of Physiology and Biochemistry, 2012,	3.0	94

68, 671-681.