
Seungyong Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1154539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrafast Electrically Tunable Polaritonic Metasurfaces. Advanced Optical Materials, 2014, 2, 1057-1063.	7.3	93
2	Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources. Nature Communications, 2014, 5, 4267.	12.8	69
3	Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics, 2018, 7, 1795-1817.	6.0	67
4	Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region. Applied Physics Letters, 2015, 106, .	3.3	56
5	External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range. Journal of Optics (United Kingdom), 2014, 16, 094002.	2.2	47
6	Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation. Science Advances, 2017, 3, e1603317.	10.3	33
7	Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers. Scientific Reports, 2016, 6, 21169.	3.3	32
8	Homogeneous photonic integration of mid-infrared quantum cascade lasers with low-loss passive waveguides on an InP platform. Optica, 2019, 6, 1023.	9.3	28
9	Terahertz difference-frequency quantum cascade laser sources on silicon. Optica, 2017, 4, 38.	9.3	25
10	Tunable Graphene Metasurfaces with Gradient Features by Selfâ€Assemblyâ€Based Moiré Nanosphere Lithography. Advanced Optical Materials, 2016, 4, 2035-2043.	7.3	21
11	Quantum cascade lasers transfer-printed on silicon-on-sapphire. Applied Physics Letters, 2017, 111, .	3.3	18
12	Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays. Applied Physics Letters, 2015, 106, .	3.3	17
13	Thermopile detector of light ellipticity. Nature Communications, 2016, 7, 12994.	12.8	12
14	Recent Progress in Widely Tunable Single-Mode Room Temperature Terahertz Quantum Cascade Laser Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 134-143.	2.9	11
15	Double-metal waveguide terahertz difference-frequency generation quantum cascade lasers with surface grating outcouplers. Applied Physics Letters, 2018, 113, 161102.	3.3	10
16	Mid-infrared quantum cascade laser arrays with electrical switching of emission frequencies. AIP Advances, 2018, 8, .	1.3	4
17	Metasurfaces: Ultrafast Electrically Tunable Polaritonic Metasurfaces (Advanced Optical Materials) Tj ETQq1 1	0.784314 rj 7.3	gBT_/Overloc
18	Monolithic tunable terahertz quantum cascade laser source based on difference frequency		0

Monolithic tunable terahertz quantum cascade laser source based on difference frequency generation. , 2014, , . 18

#	Article	IF	CITATIONS
19	Plasmonic Metasurfaces: Tunable Graphene Metasurfaces with Gradient Features by Self-Assembly-Based Moiré Nanosphere Lithography (Advanced Optical Materials 12/2016). Advanced Optical Materials, 2016, 4, 1904-1904.	7.3	0
20	Broadly tunable terahertz difference-frequency generation in quantum cascade lasers on silicon. Optical Engineering, 2017, 57, 1.	1.0	0